aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Ranalysis5.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis5.v')
-rw-r--r--theories/Reals/Ranalysis5.v16
1 files changed, 4 insertions, 12 deletions
diff --git a/theories/Reals/Ranalysis5.v b/theories/Reals/Ranalysis5.v
index f9da88aad..ccb4207ba 100644
--- a/theories/Reals/Ranalysis5.v
+++ b/theories/Reals/Ranalysis5.v
@@ -15,6 +15,7 @@ Require Import RiemannInt.
Require Import SeqProp.
Require Import Max.
Require Import Omega.
+Require Import Lra.
Local Open Scope R_scope.
(** * Preliminaries lemmas *)
@@ -245,14 +246,8 @@ Lemma IVT_interv_prelim0 : forall (x y:R) (P:R->bool) (N:nat),
x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y.
Proof.
assert (Sublemma : forall x y lb ub, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x+y) / 2 <= ub).
- intros x y lb ub Hyp.
- split.
- replace lb with ((lb + lb) * /2) by field.
- unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
- now apply Rlt_le, Rinv_0_lt_compat, IZR_lt.
- replace ub with ((ub + ub) * /2) by field.
- unfold Rdiv ; apply Rmult_le_compat_r ; intuition.
- now apply Rlt_le, Rinv_0_lt_compat, IZR_lt.
+ intros x y lb ub Hyp.
+ lra.
intros x y P N x_lt_y.
induction N.
simpl ; intuition.
@@ -1029,10 +1024,7 @@ Qed.
Lemma ub_lt_2_pos : forall x ub lb, lb < x -> x < ub -> 0 < (ub-lb)/2.
Proof.
intros x ub lb lb_lt_x x_lt_ub.
- assert (T : 0 < ub - lb).
- fourier.
- unfold Rdiv ; apply Rlt_mult_inv_pos ; intuition.
-now apply IZR_lt.
+lra.
Qed.
Definition mkposreal_lb_ub (x lb ub:R) (lb_lt_x:lb<x) (x_lt_ub:x<ub) : posreal.