aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/PSeries_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/PSeries_reg.v')
-rw-r--r--theories/Reals/PSeries_reg.v29
1 files changed, 14 insertions, 15 deletions
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
index 61d1b5afe..146d69101 100644
--- a/theories/Reals/PSeries_reg.v
+++ b/theories/Reals/PSeries_reg.v
@@ -15,7 +15,7 @@ Require Import Ranalysis1.
Require Import MVT.
Require Import Max.
Require Import Even.
-Require Import Fourier.
+Require Import Lra.
Local Open Scope R_scope.
(* Boule is French for Ball *)
@@ -431,7 +431,7 @@ assert (ctrho : forall n z, Boule c d z -> continuity_pt (rho_ n) z).
intros y dyz; unfold rho_; destruct (Req_EM_T y x) as [xy | xny].
rewrite xy in dyz.
destruct (Rle_dec delta (Rabs (z - x))).
- rewrite Rmin_left, R_dist_sym in dyz; unfold R_dist in dyz; fourier.
+ rewrite Rmin_left, R_dist_sym in dyz; unfold R_dist in dyz; lra.
rewrite Rmin_right, R_dist_sym in dyz; unfold R_dist in dyz;
[case (Rlt_irrefl _ dyz) |apply Rlt_le, Rnot_le_gt; assumption].
reflexivity.
@@ -449,7 +449,7 @@ assert (ctrho : forall n z, Boule c d z -> continuity_pt (rho_ n) z).
assert (CVU rho_ rho c d ).
intros eps ep.
assert (ep8 : 0 < eps/8).
- fourier.
+ lra.
destruct (cvu _ ep8) as [N Pn1].
assert (cauchy1 : forall n p, (N <= n)%nat -> (N <= p)%nat ->
forall z, Boule c d z -> Rabs (f' n z - f' p z) < eps/4).
@@ -537,7 +537,7 @@ assert (CVU rho_ rho c d ).
simpl; unfold R_dist.
unfold Rminus; rewrite (Rplus_comm y), Rplus_assoc, Rplus_opp_r, Rplus_0_r.
rewrite Rabs_pos_eq;[ |apply Rlt_le; assumption ].
- apply Rlt_le_trans with (Rmin (Rmin d' d2) delta);[fourier | ].
+ apply Rlt_le_trans with (Rmin (Rmin d' d2) delta);[lra | ].
apply Rle_trans with (Rmin d' d2); apply Rmin_l.
apply Rle_trans with (1 := R_dist_tri _ _ (rho_ p (y + Rmin (Rmin d' d2) delta/2))).
apply Rplus_le_compat.
@@ -548,33 +548,32 @@ assert (CVU rho_ rho c d ).
replace (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) with
((f p (y + Rmin (Rmin d' d2) delta / 2) - f p x)/
((y + Rmin (Rmin d' d2) delta / 2) - x)).
- apply step_2; auto; try fourier.
+ apply step_2; auto; try lra.
assert (0 < pos delta) by (apply cond_pos).
apply Boule_convex with y (y + delta/2).
assumption.
destruct (Pdelta (y + delta/2)); auto.
- rewrite xy; unfold Boule; rewrite Rabs_pos_eq; try fourier; auto.
- split; try fourier.
+ rewrite xy; unfold Boule; rewrite Rabs_pos_eq; try lra; auto.
+ split; try lra.
apply Rplus_le_compat_l, Rmult_le_compat_r;[ | apply Rmin_r].
now apply Rlt_le, Rinv_0_lt_compat, Rlt_0_2.
- apply Rminus_not_eq_right; rewrite xy; apply Rgt_not_eq; fourier.
unfold rho_.
destruct (Req_EM_T (y + Rmin (Rmin d' d2) delta/2) x) as [ymx | ymnx].
- case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); fourier.
+ case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); lra.
reflexivity.
unfold rho_.
destruct (Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x) as [ymx | ymnx].
- case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); fourier.
+ case (RIneq.Rle_not_lt _ _ (Req_le _ _ ymx)); lra.
reflexivity.
- apply Rlt_le, Pd2; split;[split;[exact I | apply Rlt_not_eq; fourier] | ].
+ apply Rlt_le, Pd2; split;[split;[exact I | apply Rlt_not_eq; lra] | ].
simpl; unfold R_dist.
unfold Rminus; rewrite (Rplus_comm y), Rplus_assoc, Rplus_opp_r, Rplus_0_r.
- rewrite Rabs_pos_eq;[ | fourier].
- apply Rlt_le_trans with (Rmin (Rmin d' d2) delta); [fourier |].
+ rewrite Rabs_pos_eq;[ | lra].
+ apply Rlt_le_trans with (Rmin (Rmin d' d2) delta); [lra |].
apply Rle_trans with (Rmin d' d2).
solve[apply Rmin_l].
solve[apply Rmin_r].
- apply Rlt_le, Rlt_le_trans with (eps/4);[ | fourier].
+ apply Rlt_le, Rlt_le_trans with (eps/4);[ | lra].
unfold rho_; destruct (Req_EM_T y x); solve[auto].
assert (unif_ac' : forall p, (N <= p)%nat ->
forall y, Boule c d y -> Rabs (rho y - rho_ p y) < eps).
@@ -589,7 +588,7 @@ assert (CVU rho_ rho c d ).
intros eps' ep'; simpl; exists 0%nat; intros; rewrite R_dist_eq; assumption.
intros p pN y b_y.
replace eps with (eps/2 + eps/2) by field.
- assert (ep2 : 0 < eps/2) by fourier.
+ assert (ep2 : 0 < eps/2) by lra.
destruct (cvrho y b_y _ ep2) as [N2 Pn2].
apply Rle_lt_trans with (1 := R_dist_tri _ _ (rho_ (max N N2) y)).
apply Rplus_lt_le_compat.