aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Reals/Alembert.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Alembert.v')
-rw-r--r--theories/Reals/Alembert.v40
1 files changed, 19 insertions, 21 deletions
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index 38e9bf7f4..a92b3584b 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -400,15 +400,14 @@ Theorem Alembert_C3 :
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
{ l:R | Pser An x l }.
Proof.
- intros; case (total_order_T x 0); intro.
- elim s; intro.
+ intros; destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red; intro; rewrite H1 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H1 in Hlt; elim (Rlt_irrefl _ Hlt).
apply AlembertC3_step2; assumption.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
- red; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H1 in Hgt; elim (Rlt_irrefl _ Hgt).
Defined.
Lemma Alembert_C4 :
@@ -586,14 +585,13 @@ Lemma Alembert_C6 :
elim X; intros.
exists x0.
apply tech12; assumption.
- case (total_order_T x 0); intro.
- elim s; intro.
+ destruct (total_order_T x 0) as [[Hlt|Heq]|Hgt].
eapply Alembert_C5 with (k * Rabs x).
split.
unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
@@ -604,7 +602,7 @@ Lemma Alembert_C6 :
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red; intro; rewrite H3 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H3 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
@@ -621,7 +619,7 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
@@ -629,7 +627,7 @@ Lemma Alembert_C6 :
unfold R_dist in H5.
unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
simpl.
@@ -641,14 +639,14 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
apply H0.
apply pow_nonzero.
- red; intro; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
+ red; intro H7; rewrite H7 in Hlt; elim (Rlt_irrefl _ Hlt).
exists (An 0%nat).
unfold Un_cv.
intros.
@@ -661,14 +659,14 @@ Lemma Alembert_C6 :
simpl; ring.
rewrite tech5.
rewrite <- Hrecn.
- rewrite b; simpl; ring.
+ rewrite Heq; simpl; ring.
unfold ge; apply le_O_n.
eapply Alembert_C5 with (k * Rabs x).
split.
unfold Rdiv; apply Rmult_le_pos.
left; assumption.
left; apply Rabs_pos_lt.
- red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
apply Rmult_lt_reg_l with (/ k).
apply Rinv_0_lt_compat; assumption.
rewrite <- Rmult_assoc.
@@ -679,7 +677,7 @@ Lemma Alembert_C6 :
intro; apply prod_neq_R0.
apply H0.
apply pow_nonzero.
- red; intro; rewrite H3 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H3 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Un_cv; unfold Un_cv in H1.
intros.
cut (0 < eps / Rabs x).
@@ -696,7 +694,7 @@ Lemma Alembert_C6 :
rewrite Rabs_Rabsolu.
apply Rmult_lt_reg_l with (/ Rabs x).
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
@@ -704,7 +702,7 @@ Lemma Alembert_C6 :
unfold R_dist in H5.
unfold Rdiv; unfold Rdiv in H5; apply H5; assumption.
apply Rabs_no_R0.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Rdiv; replace (S n) with (n + 1)%nat; [ idtac | ring ].
rewrite pow_add.
simpl.
@@ -716,12 +714,12 @@ Lemma Alembert_C6 :
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; reflexivity.
apply pow_nonzero.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
apply H0.
apply pow_nonzero.
- red; intro; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
unfold Rdiv; apply Rmult_lt_0_compat.
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
- red; intro H7; rewrite H7 in r; elim (Rlt_irrefl _ r).
+ red; intro H7; rewrite H7 in Hgt; elim (Rlt_irrefl _ Hgt).
Qed.