aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Program/Combinators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Combinators.v')
-rw-r--r--theories/Program/Combinators.v12
1 files changed, 3 insertions, 9 deletions
diff --git a/theories/Program/Combinators.v b/theories/Program/Combinators.v
index 90db10ef1..237d878bf 100644
--- a/theories/Program/Combinators.v
+++ b/theories/Program/Combinators.v
@@ -22,15 +22,13 @@ Open Scope program_scope.
Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f.
Proof.
intros.
- unfold id, compose.
- symmetry. apply eta_expansion.
+ reflexivity.
Qed.
Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f.
Proof.
intros.
- unfold id, compose.
- symmetry ; apply eta_expansion.
+ reflexivity.
Qed.
Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D),
@@ -47,9 +45,7 @@ Hint Rewrite <- @compose_assoc : core.
Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id.
Proof.
- unfold flip, compose.
intros.
- extensionality x ; extensionality y ; extensionality z.
reflexivity.
Qed.
@@ -57,9 +53,7 @@ Qed.
Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id.
Proof.
- simpl ; intros.
- unfold prod_uncurry, prod_curry, compose.
- extensionality x ; extensionality y ; extensionality z.
+ intros.
reflexivity.
Qed.