aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Abstract
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract')
-rw-r--r--theories/Numbers/Natural/Abstract/NAxioms.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v
index 8bd57b988..a4e8c056f 100644
--- a/theories/Numbers/Natural/Abstract/NAxioms.v
+++ b/theories/Numbers/Natural/Abstract/NAxioms.v
@@ -45,22 +45,22 @@ Notation "x >= y" := (NZle y x) (only parsing) : NatScope.
Open Local Scope NatScope.
-Parameter Inline recursion : forall A : Set, A -> (N -> A -> A) -> N -> A.
+Parameter Inline recursion : forall A : Type, A -> (N -> A -> A) -> N -> A.
Implicit Arguments recursion [A].
Axiom pred_0 : P 0 == 0.
-Axiom recursion_wd : forall (A : Set) (Aeq : relation A),
+Axiom recursion_wd : forall (A : Type) (Aeq : relation A),
forall a a' : A, Aeq a a' ->
forall f f' : N -> A -> A, fun2_eq Neq Aeq Aeq f f' ->
forall x x' : N, x == x' ->
Aeq (recursion a f x) (recursion a' f' x').
Axiom recursion_0 :
- forall (A : Set) (a : A) (f : N -> A -> A), recursion a f 0 = a.
+ forall (A : Type) (a : A) (f : N -> A -> A), recursion a f 0 = a.
Axiom recursion_succ :
- forall (A : Set) (Aeq : relation A) (a : A) (f : N -> A -> A),
+ forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
Aeq a a -> fun2_wd Neq Aeq Aeq f ->
forall n : N, Aeq (recursion a f (S n)) (f n (recursion a f n)).