diff options
Diffstat (limited to 'theories/Numbers/Natural/Abstract')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NAxioms.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v index 8bd57b988..a4e8c056f 100644 --- a/theories/Numbers/Natural/Abstract/NAxioms.v +++ b/theories/Numbers/Natural/Abstract/NAxioms.v @@ -45,22 +45,22 @@ Notation "x >= y" := (NZle y x) (only parsing) : NatScope. Open Local Scope NatScope. -Parameter Inline recursion : forall A : Set, A -> (N -> A -> A) -> N -> A. +Parameter Inline recursion : forall A : Type, A -> (N -> A -> A) -> N -> A. Implicit Arguments recursion [A]. Axiom pred_0 : P 0 == 0. -Axiom recursion_wd : forall (A : Set) (Aeq : relation A), +Axiom recursion_wd : forall (A : Type) (Aeq : relation A), forall a a' : A, Aeq a a' -> forall f f' : N -> A -> A, fun2_eq Neq Aeq Aeq f f' -> forall x x' : N, x == x' -> Aeq (recursion a f x) (recursion a' f' x'). Axiom recursion_0 : - forall (A : Set) (a : A) (f : N -> A -> A), recursion a f 0 = a. + forall (A : Type) (a : A) (f : N -> A -> A), recursion a f 0 = a. Axiom recursion_succ : - forall (A : Set) (Aeq : relation A) (a : A) (f : N -> A -> A), + forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A), Aeq a a -> fun2_wd Neq Aeq Aeq f -> forall n : N, Aeq (recursion a f (S n)) (f n (recursion a f n)). |