aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Natural/Abstract/NTimesOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NTimesOrder.v')
-rw-r--r--theories/Numbers/Natural/Abstract/NTimesOrder.v100
1 files changed, 50 insertions, 50 deletions
diff --git a/theories/Numbers/Natural/Abstract/NTimesOrder.v b/theories/Numbers/Natural/Abstract/NTimesOrder.v
index 15d99c757..31f417733 100644
--- a/theories/Numbers/Natural/Abstract/NTimesOrder.v
+++ b/theories/Numbers/Natural/Abstract/NTimesOrder.v
@@ -16,54 +16,54 @@ Module NTimesOrderPropFunct (Import NAxiomsMod : NAxiomsSig).
Module Export NPlusOrderPropMod := NPlusOrderPropFunct NAxiomsMod.
Open Local Scope NatScope.
-Theorem times_lt_pred :
+Theorem mul_lt_pred :
forall p q n m : N, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
-Proof NZtimes_lt_pred.
+Proof NZmul_lt_pred.
-Theorem times_lt_mono_pos_l : forall p n m : N, 0 < p -> (n < m <-> p * n < p * m).
-Proof NZtimes_lt_mono_pos_l.
+Theorem mul_lt_mono_pos_l : forall p n m : N, 0 < p -> (n < m <-> p * n < p * m).
+Proof NZmul_lt_mono_pos_l.
-Theorem times_lt_mono_pos_r : forall p n m : N, 0 < p -> (n < m <-> n * p < m * p).
-Proof NZtimes_lt_mono_pos_r.
+Theorem mul_lt_mono_pos_r : forall p n m : N, 0 < p -> (n < m <-> n * p < m * p).
+Proof NZmul_lt_mono_pos_r.
-Theorem times_cancel_l : forall n m p : N, p ~= 0 -> (p * n == p * m <-> n == m).
-Proof NZtimes_cancel_l.
+Theorem mul_cancel_l : forall n m p : N, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof NZmul_cancel_l.
-Theorem times_cancel_r : forall n m p : N, p ~= 0 -> (n * p == m * p <-> n == m).
-Proof NZtimes_cancel_r.
+Theorem mul_cancel_r : forall n m p : N, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof NZmul_cancel_r.
-Theorem times_id_l : forall n m : N, m ~= 0 -> (n * m == m <-> n == 1).
-Proof NZtimes_id_l.
+Theorem mul_id_l : forall n m : N, m ~= 0 -> (n * m == m <-> n == 1).
+Proof NZmul_id_l.
-Theorem times_id_r : forall n m : N, n ~= 0 -> (n * m == n <-> m == 1).
-Proof NZtimes_id_r.
+Theorem mul_id_r : forall n m : N, n ~= 0 -> (n * m == n <-> m == 1).
+Proof NZmul_id_r.
-Theorem times_le_mono_pos_l : forall n m p : N, 0 < p -> (n <= m <-> p * n <= p * m).
-Proof NZtimes_le_mono_pos_l.
+Theorem mul_le_mono_pos_l : forall n m p : N, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof NZmul_le_mono_pos_l.
-Theorem times_le_mono_pos_r : forall n m p : N, 0 < p -> (n <= m <-> n * p <= m * p).
-Proof NZtimes_le_mono_pos_r.
+Theorem mul_le_mono_pos_r : forall n m p : N, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof NZmul_le_mono_pos_r.
-Theorem times_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n * m.
-Proof NZtimes_pos_pos.
+Theorem mul_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n * m.
+Proof NZmul_pos_pos.
-Theorem lt_1_times_pos : forall n m : N, 1 < n -> 0 < m -> 1 < n * m.
-Proof NZlt_1_times_pos.
+Theorem lt_1_mul_pos : forall n m : N, 1 < n -> 0 < m -> 1 < n * m.
+Proof NZlt_1_mul_pos.
-Theorem eq_times_0 : forall n m : N, n * m == 0 <-> n == 0 \/ m == 0.
-Proof NZeq_times_0.
+Theorem eq_mul_0 : forall n m : N, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
-Theorem neq_times_0 : forall n m : N, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
-Proof NZneq_times_0.
+Theorem neq_mul_0 : forall n m : N, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
Theorem eq_square_0 : forall n : N, n * n == 0 <-> n == 0.
Proof NZeq_square_0.
-Theorem eq_times_0_l : forall n m : N, n * m == 0 -> m ~= 0 -> n == 0.
-Proof NZeq_times_0_l.
+Theorem eq_mul_0_l : forall n m : N, n * m == 0 -> m ~= 0 -> n == 0.
+Proof NZeq_mul_0_l.
-Theorem eq_times_0_r : forall n m : N, n * m == 0 -> n ~= 0 -> m == 0.
-Proof NZeq_times_0_r.
+Theorem eq_mul_0_r : forall n m : N, n * m == 0 -> n ~= 0 -> m == 0.
+Proof NZeq_mul_0_r.
Theorem square_lt_mono : forall n m : N, n < m <-> n * n < m * m.
Proof.
@@ -79,50 +79,50 @@ intros n m; split; intro;
try assumption; apply le_0_l.
Qed.
-Theorem times_2_mono_l : forall n m : N, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
-Proof NZtimes_2_mono_l.
+Theorem mul_2_mono_l : forall n m : N, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof NZmul_2_mono_l.
(* Theorems that are either not valid on Z or have different proofs on N and Z *)
-Theorem times_le_mono_l : forall n m p : N, n <= m -> p * n <= p * m.
+Theorem mul_le_mono_l : forall n m p : N, n <= m -> p * n <= p * m.
Proof.
-intros; apply NZtimes_le_mono_nonneg_l. apply le_0_l. assumption.
+intros; apply NZmul_le_mono_nonneg_l. apply le_0_l. assumption.
Qed.
-Theorem times_le_mono_r : forall n m p : N, n <= m -> n * p <= m * p.
+Theorem mul_le_mono_r : forall n m p : N, n <= m -> n * p <= m * p.
Proof.
-intros; apply NZtimes_le_mono_nonneg_r. apply le_0_l. assumption.
+intros; apply NZmul_le_mono_nonneg_r. apply le_0_l. assumption.
Qed.
-Theorem times_lt_mono : forall n m p q : N, n < m -> p < q -> n * p < m * q.
+Theorem mul_lt_mono : forall n m p q : N, n < m -> p < q -> n * p < m * q.
Proof.
-intros; apply NZtimes_lt_mono_nonneg; try assumption; apply le_0_l.
+intros; apply NZmul_lt_mono_nonneg; try assumption; apply le_0_l.
Qed.
-Theorem times_le_mono : forall n m p q : N, n <= m -> p <= q -> n * p <= m * q.
+Theorem mul_le_mono : forall n m p q : N, n <= m -> p <= q -> n * p <= m * q.
Proof.
-intros; apply NZtimes_le_mono_nonneg; try assumption; apply le_0_l.
+intros; apply NZmul_le_mono_nonneg; try assumption; apply le_0_l.
Qed.
-Theorem lt_0_times : forall n m : N, n * m > 0 <-> n > 0 /\ m > 0.
+Theorem lt_0_mul : forall n m : N, n * m > 0 <-> n > 0 /\ m > 0.
Proof.
intros n m; split; [intro H | intros [H1 H2]].
-apply -> NZlt_0_times in H. destruct H as [[H1 H2] | [H1 H2]]. now split. false_hyp H1 nlt_0_r.
-now apply NZtimes_pos_pos.
+apply -> NZlt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split. false_hyp H1 nlt_0_r.
+now apply NZmul_pos_pos.
Qed.
-Notation times_pos := lt_0_times (only parsing).
+Notation mul_pos := lt_0_mul (only parsing).
-Theorem eq_times_1 : forall n m : N, n * m == 1 <-> n == 1 /\ m == 1.
+Theorem eq_mul_1 : forall n m : N, n * m == 1 <-> n == 1 /\ m == 1.
Proof.
intros n m.
-split; [| intros [H1 H2]; now rewrite H1, H2, times_1_l].
+split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l].
intro H; destruct (NZlt_trichotomy n 1) as [H1 | [H1 | H1]].
-apply -> lt_1_r in H1. rewrite H1, times_0_l in H. false_hyp H neq_0_succ.
-rewrite H1, times_1_l in H; now split.
+apply -> lt_1_r in H1. rewrite H1, mul_0_l in H. false_hyp H neq_0_succ.
+rewrite H1, mul_1_l in H; now split.
destruct (eq_0_gt_0_cases m) as [H2 | H2].
-rewrite H2, times_0_r in H; false_hyp H neq_0_succ.
-apply -> (times_lt_mono_pos_r m) in H1; [| assumption]. rewrite times_1_l in H1.
+rewrite H2, mul_0_r in H; false_hyp H neq_0_succ.
+apply -> (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1.
assert (H3 : 1 < n * m) by now apply (lt_1_l 0 m).
rewrite H in H3; false_hyp H3 lt_irrefl.
Qed.