diff options
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NSub.v')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NSub.v | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v index bc638cf3b..35d3b8aa2 100644 --- a/theories/Numbers/Natural/Abstract/NSub.v +++ b/theories/Numbers/Natural/Abstract/NSub.v @@ -128,6 +128,83 @@ intro m; rewrite sub_0_r; split; intro H; intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ. Qed. +Theorem sub_add_le : forall n m, n <= n - m + m. +Proof. +intros. +destruct (le_ge_cases n m) as [LE|GE]. +rewrite <- sub_0_le in LE. rewrite LE; nzsimpl. +now rewrite <- sub_0_le. +rewrite sub_add by assumption. apply le_refl. +Qed. + +Theorem le_sub_le_add_r : forall n m p, + n - p <= m <-> n <= m + p. +Proof. +intros n m p. +split; intros LE. +rewrite (add_le_mono_r _ _ p) in LE. +apply le_trans with (n-p+p); auto using sub_add_le. +destruct (le_ge_cases n p) as [LE'|GE]. +rewrite <- sub_0_le in LE'. rewrite LE'. apply le_0_l. +rewrite (add_le_mono_r _ _ p). now rewrite sub_add. +Qed. + +Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p. +Proof. +intros n m p. rewrite add_comm; apply le_sub_le_add_r. +Qed. + +Theorem lt_sub_lt_add_r : forall n m p, + n - p < m -> n < m + p. +Proof. +intros n m p LT. +rewrite (add_lt_mono_r _ _ p) in LT. +apply le_lt_trans with (n-p+p); auto using sub_add_le. +Qed. + +(** Unfortunately, we do not have [n < m + p -> n - p < m]. + For instance [1<0+2] but not [1-2<0]. *) + +Theorem lt_sub_lt_add_l : forall n m p, n - m < p -> n < m + p. +Proof. +intros n m p. rewrite add_comm; apply lt_sub_lt_add_r. +Qed. + +Theorem le_add_le_sub_r : forall n m p, n + p <= m -> n <= m - p. +Proof. +intros n m p LE. +apply (add_le_mono_r _ _ p). +rewrite sub_add. assumption. +apply le_trans with (n+p); trivial. +rewrite <- (add_0_l p) at 1. rewrite <- add_le_mono_r. apply le_0_l. +Qed. + +(** Unfortunately, we do not have [n <= m - p -> n + p <= m]. + For instance [0<=1-2] but not [2+0<=1]. *) + +Theorem le_add_le_sub_l : forall n m p, n + p <= m -> p <= m - n. +Proof. +intros n m p. rewrite add_comm; apply le_add_le_sub_r. +Qed. + +Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p. +Proof. +intros n m p. +destruct (le_ge_cases p m) as [LE|GE]. +rewrite <- (sub_add p m) at 1 by assumption. +now rewrite <- add_lt_mono_r. +assert (GE' := GE). rewrite <- sub_0_le in GE'; rewrite GE'. +split; intros LT. +elim (lt_irrefl m). apply le_lt_trans with (n+p); trivial. + rewrite <- (add_0_l m). apply add_le_mono. apply le_0_l. assumption. +now elim (nlt_0_r n). +Qed. + +Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n. +Proof. +intros n m p. rewrite add_comm; apply lt_add_lt_sub_r. +Qed. + (** Sub and mul *) Theorem mul_pred_r : forall n m, n * (P m) == n * m - n. |