aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/NatInt/NZTimesOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZTimesOrder.v')
-rw-r--r--theories/Numbers/NatInt/NZTimesOrder.v196
1 files changed, 98 insertions, 98 deletions
diff --git a/theories/Numbers/NatInt/NZTimesOrder.v b/theories/Numbers/NatInt/NZTimesOrder.v
index b48acc598..ebb2a9b5d 100644
--- a/theories/Numbers/NatInt/NZTimesOrder.v
+++ b/theories/Numbers/NatInt/NZTimesOrder.v
@@ -17,263 +17,263 @@ Module NZTimesOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
Module Export NZPlusOrderPropMod := NZPlusOrderPropFunct NZOrdAxiomsMod.
Open Local Scope NatIntScope.
-Theorem NZtimes_lt_pred :
+Theorem NZmul_lt_pred :
forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
Proof.
-intros p q n m H. rewrite <- H. do 2 rewrite NZtimes_succ_l.
-rewrite <- (NZplus_assoc (p * n) n m).
-rewrite <- (NZplus_assoc (p * m) m n).
-rewrite (NZplus_comm n m). now rewrite <- NZplus_lt_mono_r.
+intros p q n m H. rewrite <- H. do 2 rewrite NZmul_succ_l.
+rewrite <- (NZadd_assoc (p * n) n m).
+rewrite <- (NZadd_assoc (p * m) m n).
+rewrite (NZadd_comm n m). now rewrite <- NZadd_lt_mono_r.
Qed.
-Theorem NZtimes_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
+Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
-intros p H IH n m H1. do 2 rewrite NZtimes_succ_l.
+intros p H IH n m H1. do 2 rewrite NZmul_succ_l.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
-intros n1 m1 H2. apply NZplus_lt_mono; [now apply -> IH | assumption].
+intros n1 m1 H2. apply NZadd_lt_mono; [now apply -> IH | assumption].
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
-rewrite <- H; do 2 rewrite NZtimes_0_l; now do 2 rewrite NZplus_0_l.
+rewrite <- H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
Qed.
-Theorem NZtimes_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
+Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
Proof.
intros p n m.
-rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p). now apply NZtimes_lt_mono_pos_l.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_pos_l.
Qed.
-Theorem NZtimes_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
+Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
Proof.
NZord_induct p.
intros n m H; false_hyp H NZlt_irrefl.
intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
intros p H IH n m H1. apply <- NZle_succ_l in H.
le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
-intros n1 m1 H2. apply (NZle_lt_plus_lt n1 m1).
-now apply NZlt_le_incl. do 2 rewrite <- NZtimes_succ_l. now apply -> IH.
+intros n1 m1 H2. apply (NZle_lt_add_lt n1 m1).
+now apply NZlt_le_incl. do 2 rewrite <- NZmul_succ_l. now apply -> IH.
split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
apply <- NZle_ngt in H3. le_elim H3.
apply NZlt_asymm in H2. apply H2. now apply LR.
rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
-rewrite (NZtimes_lt_pred p (S p)) by reflexivity.
-rewrite H; do 2 rewrite NZtimes_0_l; now do 2 rewrite NZplus_0_l.
+rewrite (NZmul_lt_pred p (S p)) by reflexivity.
+rewrite H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
Qed.
-Theorem NZtimes_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
+Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
Proof.
intros p n m.
-rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p). now apply NZtimes_lt_mono_neg_l.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_neg_l.
Qed.
-Theorem NZtimes_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
+Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
Proof.
intros n m p H1 H2. le_elim H1.
-le_elim H2. apply NZlt_le_incl. now apply -> NZtimes_lt_mono_pos_l.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_pos_l.
apply NZeq_le_incl; now rewrite H2.
-apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZtimes_0_l.
+apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZmul_0_l.
Qed.
-Theorem NZtimes_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
+Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
Proof.
intros n m p H1 H2. le_elim H1.
-le_elim H2. apply NZlt_le_incl. now apply -> NZtimes_lt_mono_neg_l.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_neg_l.
apply NZeq_le_incl; now rewrite H2.
-apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZtimes_0_l.
+apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZmul_0_l.
Qed.
-Theorem NZtimes_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
+Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
Proof.
-intros n m p H1 H2; rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
-now apply NZtimes_le_mono_nonneg_l.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonneg_l.
Qed.
-Theorem NZtimes_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
+Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
Proof.
-intros n m p H1 H2; rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
-now apply NZtimes_le_mono_nonpos_l.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonpos_l.
Qed.
-Theorem NZtimes_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
+Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
Proof.
intros n m p H; split; intro H1.
destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
-assert (H4 : p * m < p * n); [now apply -> NZtimes_lt_mono_neg_l |].
+assert (H4 : p * m < p * n); [now apply -> NZmul_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
-assert (H4 : p * n < p * m); [now apply -> NZtimes_lt_mono_neg_l |].
+assert (H4 : p * n < p * m); [now apply -> NZmul_lt_mono_neg_l |].
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
false_hyp H2 H.
apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
-assert (H4 : p * n < p * m) by (now apply -> NZtimes_lt_mono_pos_l).
+assert (H4 : p * n < p * m) by (now apply -> NZmul_lt_mono_pos_l).
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
-assert (H4 : p * m < p * n) by (now apply -> NZtimes_lt_mono_pos_l).
+assert (H4 : p * m < p * n) by (now apply -> NZmul_lt_mono_pos_l).
rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
now rewrite H1.
Qed.
-Theorem NZtimes_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
+Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
Proof.
-intros n m p. rewrite (NZtimes_comm n p), (NZtimes_comm m p); apply NZtimes_cancel_l.
+intros n m p. rewrite (NZmul_comm n p), (NZmul_comm m p); apply NZmul_cancel_l.
Qed.
-Theorem NZtimes_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
+Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
Proof.
intros n m H.
-stepl (n * m == 1 * m) by now rewrite NZtimes_1_l. now apply NZtimes_cancel_r.
+stepl (n * m == 1 * m) by now rewrite NZmul_1_l. now apply NZmul_cancel_r.
Qed.
-Theorem NZtimes_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
+Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
Proof.
-intros n m; rewrite NZtimes_comm; apply NZtimes_id_l.
+intros n m; rewrite NZmul_comm; apply NZmul_id_l.
Qed.
-Theorem NZtimes_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
+Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
-rewrite (NZtimes_lt_mono_pos_l p n m) by assumption.
-now rewrite -> (NZtimes_cancel_l n m p) by
+rewrite (NZmul_lt_mono_pos_l p n m) by assumption.
+now rewrite -> (NZmul_cancel_l n m p) by
(intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
Qed.
-Theorem NZtimes_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
+Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
Proof.
-intros n m p. rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
-apply NZtimes_le_mono_pos_l.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_pos_l.
Qed.
-Theorem NZtimes_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
+Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
Proof.
intros n m p H; do 2 rewrite NZlt_eq_cases.
-rewrite (NZtimes_lt_mono_neg_l p n m); [| assumption].
-rewrite -> (NZtimes_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+rewrite (NZmul_lt_mono_neg_l p n m); [| assumption].
+rewrite -> (NZmul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
Qed.
-Theorem NZtimes_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
+Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
Proof.
-intros n m p. rewrite (NZtimes_comm n p); rewrite (NZtimes_comm m p);
-apply NZtimes_le_mono_neg_l.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_neg_l.
Qed.
-Theorem NZtimes_lt_mono_nonneg :
+Theorem NZmul_lt_mono_nonneg :
forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
Proof.
intros n m p q H1 H2 H3 H4.
apply NZle_lt_trans with (m * p).
-apply NZtimes_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
-apply -> NZtimes_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
+apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+apply -> NZmul_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
Qed.
(* There are still many variants of the theorem above. One can assume 0 < n
or 0 < p or n <= m or p <= q. *)
-Theorem NZtimes_le_mono_nonneg :
+Theorem NZmul_le_mono_nonneg :
forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
Proof.
intros n m p q H1 H2 H3 H4.
le_elim H2; le_elim H4.
-apply NZlt_le_incl; now apply NZtimes_lt_mono_nonneg.
-rewrite <- H4; apply NZtimes_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
-rewrite <- H2; apply NZtimes_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
+apply NZlt_le_incl; now apply NZmul_lt_mono_nonneg.
+rewrite <- H4; apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+rewrite <- H2; apply NZmul_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
rewrite H2; rewrite H4; now apply NZeq_le_incl.
Qed.
-Theorem NZtimes_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
+Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
Proof.
intros n m H1 H2.
-rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_pos_r.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_pos_r.
Qed.
-Theorem NZtimes_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
+Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
Proof.
intros n m H1 H2.
-rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_neg_r.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
Qed.
-Theorem NZtimes_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
+Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
Proof.
intros n m H1 H2.
-rewrite <- (NZtimes_0_l m). now apply -> NZtimes_lt_mono_neg_r.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
Qed.
-Theorem NZtimes_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
+Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
Proof.
-intros; rewrite NZtimes_comm; now apply NZtimes_pos_neg.
+intros; rewrite NZmul_comm; now apply NZmul_pos_neg.
Qed.
-Theorem NZlt_1_times_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
+Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
Proof.
-intros n m H1 H2. apply -> (NZtimes_lt_mono_pos_r m) in H1.
-rewrite NZtimes_1_l in H1. now apply NZlt_1_l with m.
+intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
+rewrite NZmul_1_l in H1. now apply NZlt_1_l with m.
assumption.
Qed.
-Theorem NZeq_times_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
+Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
Proof.
intros n m; split.
intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
try (now right); try (now left).
-elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZtimes_neg_neg |].
-elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZtimes_neg_pos |].
-elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZtimes_pos_neg |].
-elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZtimes_pos_pos |].
-intros [H | H]. now rewrite H, NZtimes_0_l. now rewrite H, NZtimes_0_r.
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_neg_neg |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_neg_pos |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_pos_neg |].
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_pos_pos |].
+intros [H | H]. now rewrite H, NZmul_0_l. now rewrite H, NZmul_0_r.
Qed.
-Theorem NZneq_times_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
Proof.
intros n m; split; intro H.
-intro H1; apply -> NZeq_times_0 in H1. tauto.
+intro H1; apply -> NZeq_mul_0 in H1. tauto.
split; intro H1; rewrite H1 in H;
-(rewrite NZtimes_0_l in H || rewrite NZtimes_0_r in H); now apply H.
+(rewrite NZmul_0_l in H || rewrite NZmul_0_r in H); now apply H.
Qed.
Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.
Proof.
-intro n; rewrite NZeq_times_0; tauto.
+intro n; rewrite NZeq_mul_0; tauto.
Qed.
-Theorem NZeq_times_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
+Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
Proof.
-intros n m H1 H2. apply -> NZeq_times_0 in H1. destruct H1 as [H1 | H1].
+intros n m H1 H2. apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
assumption. false_hyp H1 H2.
Qed.
-Theorem NZeq_times_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
+Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
Proof.
-intros n m H1 H2; apply -> NZeq_times_0 in H1. destruct H1 as [H1 | H1].
+intros n m H1 H2; apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
false_hyp H1 H2. assumption.
Qed.
-Theorem NZlt_0_times : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
+Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
-[| rewrite H1 in H; rewrite NZtimes_0_l in H; false_hyp H NZlt_irrefl |];
+[| rewrite H1 in H; rewrite NZmul_0_l in H; false_hyp H NZlt_irrefl |];
(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
-[| rewrite H2 in H; rewrite NZtimes_0_r in H; false_hyp H NZlt_irrefl |]);
+[| rewrite H2 in H; rewrite NZmul_0_r in H; false_hyp H NZlt_irrefl |]);
try (left; now split); try (right; now split).
-assert (H3 : n * m < 0) by now apply NZtimes_neg_pos.
+assert (H3 : n * m < 0) by now apply NZmul_neg_pos.
elimtype False; now apply (NZlt_asymm (n * m) 0).
-assert (H3 : n * m < 0) by now apply NZtimes_pos_neg.
+assert (H3 : n * m < 0) by now apply NZmul_pos_neg.
elimtype False; now apply (NZlt_asymm (n * m) 0).
-now apply NZtimes_pos_pos. now apply NZtimes_neg_neg.
+now apply NZmul_pos_pos. now apply NZmul_neg_neg.
Qed.
Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.
Proof.
-intros n m H1 H2. now apply NZtimes_lt_mono_nonneg.
+intros n m H1 H2. now apply NZmul_lt_mono_nonneg.
Qed.
Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.
Proof.
-intros n m H1 H2. now apply NZtimes_le_mono_nonneg.
+intros n m H1 H2. now apply NZmul_le_mono_nonneg.
Qed.
(* The converse theorems require nonnegativity (or nonpositivity) of the
@@ -297,14 +297,14 @@ assumption. assert (F : m * m < n * n) by now apply NZsquare_lt_mono_nonneg.
apply -> NZlt_nge in F. false_hyp H2 F.
Qed.
-Theorem NZtimes_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
Proof.
intros n m H. apply <- NZle_succ_l in H.
-apply -> (NZtimes_le_mono_pos_l (S n) m (1 + 1)) in H.
-repeat rewrite NZtimes_plus_distr_r in *; repeat rewrite NZtimes_1_l in *.
-repeat rewrite NZplus_succ_r in *. repeat rewrite NZplus_succ_l in *. rewrite NZplus_0_l.
+apply -> (NZmul_le_mono_pos_l (S n) m (1 + 1)) in H.
+repeat rewrite NZmul_add_distr_r in *; repeat rewrite NZmul_1_l in *.
+repeat rewrite NZadd_succ_r in *. repeat rewrite NZadd_succ_l in *. rewrite NZadd_0_l.
now apply -> NZle_succ_l.
-apply NZplus_pos_pos; now apply NZlt_succ_diag_r.
+apply NZadd_pos_pos; now apply NZlt_succ_diag_r.
Qed.
End NZTimesOrderPropFunct.