aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/NatInt/NZPlus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZPlus.v')
-rw-r--r--theories/Numbers/NatInt/NZPlus.v58
1 files changed, 29 insertions, 29 deletions
diff --git a/theories/Numbers/NatInt/NZPlus.v b/theories/Numbers/NatInt/NZPlus.v
index 673b819ba..6fb72ed4a 100644
--- a/theories/Numbers/NatInt/NZPlus.v
+++ b/theories/Numbers/NatInt/NZPlus.v
@@ -17,69 +17,69 @@ Module NZPlusPropFunct (Import NZAxiomsMod : NZAxiomsSig).
Module Export NZBasePropMod := NZBasePropFunct NZAxiomsMod.
Open Local Scope NatIntScope.
-Theorem NZplus_0_r : forall n : NZ, n + 0 == n.
+Theorem NZadd_0_r : forall n : NZ, n + 0 == n.
Proof.
-NZinduct n. now rewrite NZplus_0_l.
-intro. rewrite NZplus_succ_l. now rewrite NZsucc_inj_wd.
+NZinduct n. now rewrite NZadd_0_l.
+intro. rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
Qed.
-Theorem NZplus_succ_r : forall n m : NZ, n + S m == S (n + m).
+Theorem NZadd_succ_r : forall n m : NZ, n + S m == S (n + m).
Proof.
intros n m; NZinduct n.
-now do 2 rewrite NZplus_0_l.
-intro. repeat rewrite NZplus_succ_l. now rewrite NZsucc_inj_wd.
+now do 2 rewrite NZadd_0_l.
+intro. repeat rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
Qed.
-Theorem NZplus_comm : forall n m : NZ, n + m == m + n.
+Theorem NZadd_comm : forall n m : NZ, n + m == m + n.
Proof.
intros n m; NZinduct n.
-rewrite NZplus_0_l; now rewrite NZplus_0_r.
-intros n. rewrite NZplus_succ_l; rewrite NZplus_succ_r. now rewrite NZsucc_inj_wd.
+rewrite NZadd_0_l; now rewrite NZadd_0_r.
+intros n. rewrite NZadd_succ_l; rewrite NZadd_succ_r. now rewrite NZsucc_inj_wd.
Qed.
-Theorem NZplus_1_l : forall n : NZ, 1 + n == S n.
+Theorem NZadd_1_l : forall n : NZ, 1 + n == S n.
Proof.
-intro n; rewrite NZplus_succ_l; now rewrite NZplus_0_l.
+intro n; rewrite NZadd_succ_l; now rewrite NZadd_0_l.
Qed.
-Theorem NZplus_1_r : forall n : NZ, n + 1 == S n.
+Theorem NZadd_1_r : forall n : NZ, n + 1 == S n.
Proof.
-intro n; rewrite NZplus_comm; apply NZplus_1_l.
+intro n; rewrite NZadd_comm; apply NZadd_1_l.
Qed.
-Theorem NZplus_assoc : forall n m p : NZ, n + (m + p) == (n + m) + p.
+Theorem NZadd_assoc : forall n m p : NZ, n + (m + p) == (n + m) + p.
Proof.
intros n m p; NZinduct n.
-now do 2 rewrite NZplus_0_l.
-intro. do 3 rewrite NZplus_succ_l. now rewrite NZsucc_inj_wd.
+now do 2 rewrite NZadd_0_l.
+intro. do 3 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
Qed.
-Theorem NZplus_shuffle1 : forall n m p q : NZ, (n + m) + (p + q) == (n + p) + (m + q).
+Theorem NZadd_shuffle1 : forall n m p q : NZ, (n + m) + (p + q) == (n + p) + (m + q).
Proof.
intros n m p q.
-rewrite <- (NZplus_assoc n m (p + q)). rewrite (NZplus_comm m (p + q)).
-rewrite <- (NZplus_assoc p q m). rewrite (NZplus_assoc n p (q + m)).
-now rewrite (NZplus_comm q m).
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_comm m (p + q)).
+rewrite <- (NZadd_assoc p q m). rewrite (NZadd_assoc n p (q + m)).
+now rewrite (NZadd_comm q m).
Qed.
-Theorem NZplus_shuffle2 : forall n m p q : NZ, (n + m) + (p + q) == (n + q) + (m + p).
+Theorem NZadd_shuffle2 : forall n m p q : NZ, (n + m) + (p + q) == (n + q) + (m + p).
Proof.
intros n m p q.
-rewrite <- (NZplus_assoc n m (p + q)). rewrite (NZplus_assoc m p q).
-rewrite (NZplus_comm (m + p) q). now rewrite <- (NZplus_assoc n q (m + p)).
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_assoc m p q).
+rewrite (NZadd_comm (m + p) q). now rewrite <- (NZadd_assoc n q (m + p)).
Qed.
-Theorem NZplus_cancel_l : forall n m p : NZ, p + n == p + m <-> n == m.
+Theorem NZadd_cancel_l : forall n m p : NZ, p + n == p + m <-> n == m.
Proof.
intros n m p; NZinduct p.
-now do 2 rewrite NZplus_0_l.
-intro p. do 2 rewrite NZplus_succ_l. now rewrite NZsucc_inj_wd.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
Qed.
-Theorem NZplus_cancel_r : forall n m p : NZ, n + p == m + p <-> n == m.
+Theorem NZadd_cancel_r : forall n m p : NZ, n + p == m + p <-> n == m.
Proof.
-intros n m p. rewrite (NZplus_comm n p); rewrite (NZplus_comm m p).
-apply NZplus_cancel_l.
+intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p).
+apply NZadd_cancel_l.
Qed.
Theorem NZminus_1_r : forall n : NZ, n - 1 == P n.