diff options
Diffstat (limited to 'theories/Numbers/NatInt/NZOrder.v')
-rw-r--r-- | theories/Numbers/NatInt/NZOrder.v | 36 |
1 files changed, 0 insertions, 36 deletions
diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v index 315d963c4..c6815ebf5 100644 --- a/theories/Numbers/NatInt/NZOrder.v +++ b/theories/Numbers/NatInt/NZOrder.v @@ -342,42 +342,6 @@ intros z n H; apply lt_exists_pred_strong with (z := z) (n := n). assumption. apply le_refl. Qed. -(** A corollary of having an order is that NZ is infinite *) - -(** This section about infinity of NZ relies on the type nat and can be -safely removed *) - -Fixpoint of_nat (n : nat) : t := - match n with - | O => 0 - | Datatypes.S n' => S (of_nat n') - end. - -Theorem of_nat_S_gt_0 : - forall (n : nat), 0 < of_nat (Datatypes.S n). -Proof. -intros n; induction n as [| n IH]; simpl in *. -apply lt_0_1. -apply lt_trans with 1. apply lt_0_1. now rewrite <- succ_lt_mono. -Qed. - -Theorem of_nat_S_neq_0 : - forall (n : nat), 0 ~= of_nat (Datatypes.S n). -Proof. -intros. apply lt_neq, of_nat_S_gt_0. -Qed. - -Lemma of_nat_injective : forall n m, of_nat n == of_nat m -> n = m. -Proof. -induction n as [|n IH]; destruct m; auto. -intros H; elim (of_nat_S_neq_0 _ H). -intros H; symmetry in H; elim (of_nat_S_neq_0 _ H). -intros. f_equal. apply IH. now rewrite <- succ_inj_wd. -(* BUG: succ_inj_wd n'est pas vu par SearchAbout *) -Qed. - -(** End of the section about the infinity of NZ *) - (** Stronger variant of induction with assumptions n >= 0 (n < 0) in the induction step *) |