aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/NatInt/NZAxioms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZAxioms.v')
-rw-r--r--theories/Numbers/NatInt/NZAxioms.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Numbers/NatInt/NZAxioms.v b/theories/Numbers/NatInt/NZAxioms.v
index 516cf5b42..1ef780986 100644
--- a/theories/Numbers/NatInt/NZAxioms.v
+++ b/theories/Numbers/NatInt/NZAxioms.v
@@ -20,11 +20,11 @@ Parameter Inline NZ0 : NZ.
Parameter Inline NZsucc : NZ -> NZ.
Parameter Inline NZpred : NZ -> NZ.
Parameter Inline NZadd : NZ -> NZ -> NZ.
-Parameter Inline NZminus : NZ -> NZ -> NZ.
+Parameter Inline NZsub : NZ -> NZ -> NZ.
Parameter Inline NZmul : NZ -> NZ -> NZ.
-(* Unary minus (opp) is not defined on natural numbers, so we have it for
-integers only *)
+(* Unary subtraction (opp) is not defined on natural numbers, so we have
+ it for integers only *)
Axiom NZeq_equiv : equiv NZ NZeq.
Add Relation NZ NZeq
@@ -36,7 +36,7 @@ as NZeq_rel.
Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
-Add Morphism NZminus with signature NZeq ==> NZeq ==> NZeq as NZminus_wd.
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
Delimit Scope NatIntScope with NatInt.
@@ -48,7 +48,7 @@ Notation S := NZsucc.
Notation P := NZpred.
Notation "1" := (S 0) : NatIntScope.
Notation "x + y" := (NZadd x y) : NatIntScope.
-Notation "x - y" := (NZminus x y) : NatIntScope.
+Notation "x - y" := (NZsub x y) : NatIntScope.
Notation "x * y" := (NZmul x y) : NatIntScope.
Axiom NZpred_succ : forall n : NZ, P (S n) == n.
@@ -60,8 +60,8 @@ Axiom NZinduction :
Axiom NZadd_0_l : forall n : NZ, 0 + n == n.
Axiom NZadd_succ_l : forall n m : NZ, (S n) + m == S (n + m).
-Axiom NZminus_0_r : forall n : NZ, n - 0 == n.
-Axiom NZminus_succ_r : forall n m : NZ, n - (S m) == P (n - m).
+Axiom NZsub_0_r : forall n : NZ, n - 0 == n.
+Axiom NZsub_succ_r : forall n m : NZ, n - (S m) == P (n - m).
Axiom NZmul_0_l : forall n : NZ, 0 * n == 0.
Axiom NZmul_succ_l : forall n m : NZ, S n * m == n * m + m.