aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZTimesOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZTimesOrder.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZTimesOrder.v256
1 files changed, 128 insertions, 128 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZTimesOrder.v b/theories/Numbers/Integer/Abstract/ZTimesOrder.v
index 6b6f34d75..d3f5a0396 100644
--- a/theories/Numbers/Integer/Abstract/ZTimesOrder.v
+++ b/theories/Numbers/Integer/Abstract/ZTimesOrder.v
@@ -16,187 +16,187 @@ Module ZTimesOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZPlusOrderPropMod := ZPlusOrderPropFunct ZAxiomsMod.
Open Local Scope IntScope.
-Theorem Ztimes_lt_pred :
+Theorem Zmul_lt_pred :
forall p q n m : Z, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
-Proof NZtimes_lt_pred.
+Proof NZmul_lt_pred.
-Theorem Ztimes_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m).
-Proof NZtimes_lt_mono_pos_l.
+Theorem Zmul_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m).
+Proof NZmul_lt_mono_pos_l.
-Theorem Ztimes_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p).
-Proof NZtimes_lt_mono_pos_r.
+Theorem Zmul_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p).
+Proof NZmul_lt_mono_pos_r.
-Theorem Ztimes_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n).
-Proof NZtimes_lt_mono_neg_l.
+Theorem Zmul_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n).
+Proof NZmul_lt_mono_neg_l.
-Theorem Ztimes_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p).
-Proof NZtimes_lt_mono_neg_r.
+Theorem Zmul_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p).
+Proof NZmul_lt_mono_neg_r.
-Theorem Ztimes_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m.
-Proof NZtimes_le_mono_nonneg_l.
+Theorem Zmul_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m.
+Proof NZmul_le_mono_nonneg_l.
-Theorem Ztimes_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n.
-Proof NZtimes_le_mono_nonpos_l.
+Theorem Zmul_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n.
+Proof NZmul_le_mono_nonpos_l.
-Theorem Ztimes_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p.
-Proof NZtimes_le_mono_nonneg_r.
+Theorem Zmul_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p.
+Proof NZmul_le_mono_nonneg_r.
-Theorem Ztimes_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p.
-Proof NZtimes_le_mono_nonpos_r.
+Theorem Zmul_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p.
+Proof NZmul_le_mono_nonpos_r.
-Theorem Ztimes_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m).
-Proof NZtimes_cancel_l.
+Theorem Zmul_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof NZmul_cancel_l.
-Theorem Ztimes_cancel_r : forall n m p : Z, p ~= 0 -> (n * p == m * p <-> n == m).
-Proof NZtimes_cancel_r.
+Theorem Zmul_cancel_r : forall n m p : Z, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof NZmul_cancel_r.
-Theorem Ztimes_id_l : forall n m : Z, m ~= 0 -> (n * m == m <-> n == 1).
-Proof NZtimes_id_l.
+Theorem Zmul_id_l : forall n m : Z, m ~= 0 -> (n * m == m <-> n == 1).
+Proof NZmul_id_l.
-Theorem Ztimes_id_r : forall n m : Z, n ~= 0 -> (n * m == n <-> m == 1).
-Proof NZtimes_id_r.
+Theorem Zmul_id_r : forall n m : Z, n ~= 0 -> (n * m == n <-> m == 1).
+Proof NZmul_id_r.
-Theorem Ztimes_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m).
-Proof NZtimes_le_mono_pos_l.
+Theorem Zmul_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof NZmul_le_mono_pos_l.
-Theorem Ztimes_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p).
-Proof NZtimes_le_mono_pos_r.
+Theorem Zmul_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof NZmul_le_mono_pos_r.
-Theorem Ztimes_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n).
-Proof NZtimes_le_mono_neg_l.
+Theorem Zmul_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n).
+Proof NZmul_le_mono_neg_l.
-Theorem Ztimes_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p).
-Proof NZtimes_le_mono_neg_r.
+Theorem Zmul_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p).
+Proof NZmul_le_mono_neg_r.
-Theorem Ztimes_lt_mono_nonneg :
+Theorem Zmul_lt_mono_nonneg :
forall n m p q : Z, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
-Proof NZtimes_lt_mono_nonneg.
+Proof NZmul_lt_mono_nonneg.
-Theorem Ztimes_lt_mono_nonpos :
+Theorem Zmul_lt_mono_nonpos :
forall n m p q : Z, m <= 0 -> n < m -> q <= 0 -> p < q -> m * q < n * p.
Proof.
intros n m p q H1 H2 H3 H4.
apply Zle_lt_trans with (m * p).
-apply Ztimes_le_mono_nonpos_l; [assumption | now apply Zlt_le_incl].
-apply -> Ztimes_lt_mono_neg_r; [assumption | now apply Zlt_le_trans with q].
+apply Zmul_le_mono_nonpos_l; [assumption | now apply Zlt_le_incl].
+apply -> Zmul_lt_mono_neg_r; [assumption | now apply Zlt_le_trans with q].
Qed.
-Theorem Ztimes_le_mono_nonneg :
+Theorem Zmul_le_mono_nonneg :
forall n m p q : Z, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
-Proof NZtimes_le_mono_nonneg.
+Proof NZmul_le_mono_nonneg.
-Theorem Ztimes_le_mono_nonpos :
+Theorem Zmul_le_mono_nonpos :
forall n m p q : Z, m <= 0 -> n <= m -> q <= 0 -> p <= q -> m * q <= n * p.
Proof.
intros n m p q H1 H2 H3 H4.
apply Zle_trans with (m * p).
-now apply Ztimes_le_mono_nonpos_l.
-apply Ztimes_le_mono_nonpos_r; [now apply Zle_trans with q | assumption].
+now apply Zmul_le_mono_nonpos_l.
+apply Zmul_le_mono_nonpos_r; [now apply Zle_trans with q | assumption].
Qed.
-Theorem Ztimes_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m.
-Proof NZtimes_pos_pos.
+Theorem Zmul_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m.
+Proof NZmul_pos_pos.
-Theorem Ztimes_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m.
-Proof NZtimes_neg_neg.
+Theorem Zmul_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m.
+Proof NZmul_neg_neg.
-Theorem Ztimes_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0.
-Proof NZtimes_pos_neg.
+Theorem Zmul_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0.
+Proof NZmul_pos_neg.
-Theorem Ztimes_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0.
-Proof NZtimes_neg_pos.
+Theorem Zmul_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0.
+Proof NZmul_neg_pos.
-Theorem Ztimes_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m.
+Theorem Zmul_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m.
Proof.
intros n m H1 H2.
-rewrite <- (Ztimes_0_l m). now apply Ztimes_le_mono_nonneg_r.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonneg_r.
Qed.
-Theorem Ztimes_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m.
+Theorem Zmul_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m.
Proof.
intros n m H1 H2.
-rewrite <- (Ztimes_0_l m). now apply Ztimes_le_mono_nonpos_r.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
Qed.
-Theorem Ztimes_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0.
+Theorem Zmul_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0.
Proof.
intros n m H1 H2.
-rewrite <- (Ztimes_0_l m). now apply Ztimes_le_mono_nonpos_r.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
Qed.
-Theorem Ztimes_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0.
+Theorem Zmul_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0.
Proof.
-intros; rewrite Ztimes_comm; now apply Ztimes_nonneg_nonpos.
+intros; rewrite Zmul_comm; now apply Zmul_nonneg_nonpos.
Qed.
-Theorem Zlt_1_times_pos : forall n m : Z, 1 < n -> 0 < m -> 1 < n * m.
-Proof NZlt_1_times_pos.
+Theorem Zlt_1_mul_pos : forall n m : Z, 1 < n -> 0 < m -> 1 < n * m.
+Proof NZlt_1_mul_pos.
-Theorem Zeq_times_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
-Proof NZeq_times_0.
+Theorem Zeq_mul_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
-Theorem Zneq_times_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
-Proof NZneq_times_0.
+Theorem Zneq_mul_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
Theorem Zeq_square_0 : forall n : Z, n * n == 0 <-> n == 0.
Proof NZeq_square_0.
-Theorem Zeq_times_0_l : forall n m : Z, n * m == 0 -> m ~= 0 -> n == 0.
-Proof NZeq_times_0_l.
+Theorem Zeq_mul_0_l : forall n m : Z, n * m == 0 -> m ~= 0 -> n == 0.
+Proof NZeq_mul_0_l.
-Theorem Zeq_times_0_r : forall n m : Z, n * m == 0 -> n ~= 0 -> m == 0.
-Proof NZeq_times_0_r.
+Theorem Zeq_mul_0_r : forall n m : Z, n * m == 0 -> n ~= 0 -> m == 0.
+Proof NZeq_mul_0_r.
-Theorem Zlt_0_times : forall n m : Z, 0 < n * m <-> 0 < n /\ 0 < m \/ m < 0 /\ n < 0.
-Proof NZlt_0_times.
+Theorem Zlt_0_mul : forall n m : Z, 0 < n * m <-> 0 < n /\ 0 < m \/ m < 0 /\ n < 0.
+Proof NZlt_0_mul.
-Notation Ztimes_pos := Zlt_0_times (only parsing).
+Notation Zmul_pos := Zlt_0_mul (only parsing).
-Theorem Zlt_times_0 :
+Theorem Zlt_mul_0 :
forall n m : Z, n * m < 0 <-> n < 0 /\ m > 0 \/ n > 0 /\ m < 0.
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
destruct (Zlt_trichotomy n 0) as [H1 | [H1 | H1]];
-[| rewrite H1 in H; rewrite Ztimes_0_l in H; false_hyp H Zlt_irrefl |];
+[| rewrite H1 in H; rewrite Zmul_0_l in H; false_hyp H Zlt_irrefl |];
(destruct (Zlt_trichotomy m 0) as [H2 | [H2 | H2]];
-[| rewrite H2 in H; rewrite Ztimes_0_r in H; false_hyp H Zlt_irrefl |]);
+[| rewrite H2 in H; rewrite Zmul_0_r in H; false_hyp H Zlt_irrefl |]);
try (left; now split); try (right; now split).
-assert (H3 : n * m > 0) by now apply Ztimes_neg_neg.
+assert (H3 : n * m > 0) by now apply Zmul_neg_neg.
elimtype False; now apply (Zlt_asymm (n * m) 0).
-assert (H3 : n * m > 0) by now apply Ztimes_pos_pos.
+assert (H3 : n * m > 0) by now apply Zmul_pos_pos.
elimtype False; now apply (Zlt_asymm (n * m) 0).
-now apply Ztimes_neg_pos. now apply Ztimes_pos_neg.
+now apply Zmul_neg_pos. now apply Zmul_pos_neg.
Qed.
-Notation Ztimes_neg := Zlt_times_0 (only parsing).
+Notation Zmul_neg := Zlt_mul_0 (only parsing).
-Theorem Zle_0_times :
+Theorem Zle_0_mul :
forall n m : Z, 0 <= n * m -> 0 <= n /\ 0 <= m \/ n <= 0 /\ m <= 0.
Proof.
assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_symm).
intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
-rewrite Zlt_0_times, Zeq_times_0.
+rewrite Zlt_0_mul, Zeq_mul_0.
pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
Qed.
-Notation Ztimes_nonneg := Zle_0_times (only parsing).
+Notation Zmul_nonneg := Zle_0_mul (only parsing).
-Theorem Zle_times_0 :
+Theorem Zle_mul_0 :
forall n m : Z, n * m <= 0 -> 0 <= n /\ m <= 0 \/ n <= 0 /\ 0 <= m.
Proof.
assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_symm).
intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
-rewrite Zlt_times_0, Zeq_times_0.
+rewrite Zlt_mul_0, Zeq_mul_0.
pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
Qed.
-Notation Ztimes_nonpos := Zle_times_0 (only parsing).
+Notation Zmul_nonpos := Zle_mul_0 (only parsing).
Theorem Zle_0_square : forall n : Z, 0 <= n * n.
Proof.
intro n; destruct (Zneg_nonneg_cases n).
-apply Zlt_le_incl; now apply Ztimes_neg_neg.
-now apply Ztimes_nonneg_nonneg.
+apply Zlt_le_incl; now apply Zmul_neg_neg.
+now apply Zmul_nonneg_nonneg.
Qed.
Notation Zsquare_nonneg := Zle_0_square (only parsing).
@@ -211,7 +211,7 @@ Proof NZsquare_lt_mono_nonneg.
Theorem Zsquare_lt_mono_nonpos : forall n m : Z, n <= 0 -> m < n -> n * n < m * m.
Proof.
-intros n m H1 H2. now apply Ztimes_lt_mono_nonpos.
+intros n m H1 H2. now apply Zmul_lt_mono_nonpos.
Qed.
Theorem Zsquare_le_mono_nonneg : forall n m : Z, 0 <= n -> n <= m -> n * n <= m * m.
@@ -219,7 +219,7 @@ Proof NZsquare_le_mono_nonneg.
Theorem Zsquare_le_mono_nonpos : forall n m : Z, n <= 0 -> m <= n -> n * n <= m * m.
Proof.
-intros n m H1 H2. now apply Ztimes_le_mono_nonpos.
+intros n m H1 H2. now apply Zmul_le_mono_nonpos.
Qed.
Theorem Zsquare_lt_simpl_nonneg : forall n m : Z, 0 <= m -> n * n < m * m -> n < m.
@@ -246,96 +246,96 @@ apply -> NZlt_nge in F. false_hyp H2 F.
apply Zlt_le_incl; now apply NZle_lt_trans with 0.
Qed.
-Theorem Ztimes_2_mono_l : forall n m : Z, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
-Proof NZtimes_2_mono_l.
+Theorem Zmul_2_mono_l : forall n m : Z, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof NZmul_2_mono_l.
-Theorem Zlt_1_times_neg : forall n m : Z, n < -1 -> m < 0 -> 1 < n * m.
+Theorem Zlt_1_mul_neg : forall n m : Z, n < -1 -> m < 0 -> 1 < n * m.
Proof.
-intros n m H1 H2. apply -> (NZtimes_lt_mono_neg_r m) in H1.
-apply <- Zopp_pos_neg in H2. rewrite Ztimes_opp_l, Ztimes_1_l in H1.
+intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
+apply <- Zopp_pos_neg in H2. rewrite Zmul_opp_l, Zmul_1_l in H1.
now apply Zlt_1_l with (- m).
assumption.
Qed.
-Theorem Zlt_times_n1_neg : forall n m : Z, 1 < n -> m < 0 -> n * m < -1.
+Theorem Zlt_mul_n1_neg : forall n m : Z, 1 < n -> m < 0 -> n * m < -1.
Proof.
-intros n m H1 H2. apply -> (NZtimes_lt_mono_neg_r m) in H1.
-rewrite Ztimes_1_l in H1. now apply Zlt_n1_r with m.
+intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
+rewrite Zmul_1_l in H1. now apply Zlt_n1_r with m.
assumption.
Qed.
-Theorem Zlt_times_n1_pos : forall n m : Z, n < -1 -> 0 < m -> n * m < -1.
+Theorem Zlt_mul_n1_pos : forall n m : Z, n < -1 -> 0 < m -> n * m < -1.
Proof.
-intros n m H1 H2. apply -> (NZtimes_lt_mono_pos_r m) in H1.
-rewrite Ztimes_opp_l, Ztimes_1_l in H1.
+intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
+rewrite Zmul_opp_l, Zmul_1_l in H1.
apply <- Zopp_neg_pos in H2. now apply Zlt_n1_r with (- m).
assumption.
Qed.
-Theorem Zlt_1_times_l : forall n m : Z, 1 < n -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Theorem Zlt_1_mul_l : forall n m : Z, 1 < n -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
-left. now apply Zlt_times_n1_neg.
-right; left; now rewrite H1, Ztimes_0_r.
-right; right; now apply Zlt_1_times_pos.
+left. now apply Zlt_mul_n1_neg.
+right; left; now rewrite H1, Zmul_0_r.
+right; right; now apply Zlt_1_mul_pos.
Qed.
-Theorem Zlt_n1_times_r : forall n m : Z, n < -1 -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Theorem Zlt_n1_mul_r : forall n m : Z, n < -1 -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
-right; right. now apply Zlt_1_times_neg.
-right; left; now rewrite H1, Ztimes_0_r.
-left. now apply Zlt_times_n1_pos.
+right; right. now apply Zlt_1_mul_neg.
+right; left; now rewrite H1, Zmul_0_r.
+left. now apply Zlt_mul_n1_pos.
Qed.
-Theorem Zeq_times_1 : forall n m : Z, n * m == 1 -> n == 1 \/ n == -1.
+Theorem Zeq_mul_1 : forall n m : Z, n * m == 1 -> n == 1 \/ n == -1.
Proof.
assert (F : ~ 1 < -1).
intro H.
assert (H1 : -1 < 0). apply <- Zopp_neg_pos. apply Zlt_succ_diag_r.
assert (H2 : 1 < 0) by now apply Zlt_trans with (-1). false_hyp H2 Znlt_succ_diag_l.
Z0_pos_neg n.
-intros m H; rewrite Ztimes_0_l in H; false_hyp H Zneq_succ_diag_r.
+intros m H; rewrite Zmul_0_l in H; false_hyp H Zneq_succ_diag_r.
intros n H; split; apply <- Zle_succ_l in H; le_elim H.
-intros m H1; apply (Zlt_1_times_l n m) in H.
+intros m H1; apply (Zlt_1_mul_l n m) in H.
rewrite H1 in H; destruct H as [H | [H | H]].
false_hyp H F. false_hyp H Zneq_succ_diag_l. false_hyp H Zlt_irrefl.
intros; now left.
-intros m H1; apply (Zlt_1_times_l n m) in H. rewrite Ztimes_opp_l in H1;
+intros m H1; apply (Zlt_1_mul_l n m) in H. rewrite Zmul_opp_l in H1;
apply -> Zeq_opp_l in H1. rewrite H1 in H; destruct H as [H | [H | H]].
false_hyp H Zlt_irrefl. apply -> Zeq_opp_l in H. rewrite Zopp_0 in H.
false_hyp H Zneq_succ_diag_l. false_hyp H F.
intros; right; symmetry; now apply Zopp_wd.
Qed.
-Theorem Zlt_times_diag_l : forall n m : Z, n < 0 -> (1 < m <-> n * m < n).
+Theorem Zlt_mul_diag_l : forall n m : Z, n < 0 -> (1 < m <-> n * m < n).
Proof.
-intros n m H. stepr (n * m < n * 1) by now rewrite Ztimes_1_r.
-now apply Ztimes_lt_mono_neg_l.
+intros n m H. stepr (n * m < n * 1) by now rewrite Zmul_1_r.
+now apply Zmul_lt_mono_neg_l.
Qed.
-Theorem Zlt_times_diag_r : forall n m : Z, 0 < n -> (1 < m <-> n < n * m).
+Theorem Zlt_mul_diag_r : forall n m : Z, 0 < n -> (1 < m <-> n < n * m).
Proof.
-intros n m H. stepr (n * 1 < n * m) by now rewrite Ztimes_1_r.
-now apply Ztimes_lt_mono_pos_l.
+intros n m H. stepr (n * 1 < n * m) by now rewrite Zmul_1_r.
+now apply Zmul_lt_mono_pos_l.
Qed.
-Theorem Zle_times_diag_l : forall n m : Z, n < 0 -> (1 <= m <-> n * m <= n).
+Theorem Zle_mul_diag_l : forall n m : Z, n < 0 -> (1 <= m <-> n * m <= n).
Proof.
-intros n m H. stepr (n * m <= n * 1) by now rewrite Ztimes_1_r.
-now apply Ztimes_le_mono_neg_l.
+intros n m H. stepr (n * m <= n * 1) by now rewrite Zmul_1_r.
+now apply Zmul_le_mono_neg_l.
Qed.
-Theorem Zle_times_diag_r : forall n m : Z, 0 < n -> (1 <= m <-> n <= n * m).
+Theorem Zle_mul_diag_r : forall n m : Z, 0 < n -> (1 <= m <-> n <= n * m).
Proof.
-intros n m H. stepr (n * 1 <= n * m) by now rewrite Ztimes_1_r.
-now apply Ztimes_le_mono_pos_l.
+intros n m H. stepr (n * 1 <= n * m) by now rewrite Zmul_1_r.
+now apply Zmul_le_mono_pos_l.
Qed.
-Theorem Zlt_times_r : forall n m p : Z, 0 < n -> 1 < p -> n < m -> n < m * p.
+Theorem Zlt_mul_r : forall n m p : Z, 0 < n -> 1 < p -> n < m -> n < m * p.
Proof.
-intros. stepl (n * 1) by now rewrite Ztimes_1_r.
-apply Ztimes_lt_mono_nonneg.
+intros. stepl (n * 1) by now rewrite Zmul_1_r.
+apply Zmul_lt_mono_nonneg.
now apply Zlt_le_incl. assumption. apply Zle_0_1. assumption.
Qed.