aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZTimes.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZTimes.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZTimes.v86
1 files changed, 43 insertions, 43 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZTimes.v b/theories/Numbers/Integer/Abstract/ZTimes.v
index 2d7ff30f7..ccf324a06 100644
--- a/theories/Numbers/Integer/Abstract/ZTimes.v
+++ b/theories/Numbers/Integer/Abstract/ZTimes.v
@@ -16,32 +16,32 @@ Module ZTimesPropFunct (Import ZAxiomsMod : ZAxiomsSig).
Module Export ZPlusPropMod := ZPlusPropFunct ZAxiomsMod.
Open Local Scope IntScope.
-Theorem Ztimes_wd :
+Theorem Zmul_wd :
forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 * m1 == n2 * m2.
-Proof NZtimes_wd.
+Proof NZmul_wd.
-Theorem Ztimes_0_l : forall n : Z, 0 * n == 0.
-Proof NZtimes_0_l.
+Theorem Zmul_0_l : forall n : Z, 0 * n == 0.
+Proof NZmul_0_l.
-Theorem Ztimes_succ_l : forall n m : Z, (S n) * m == n * m + m.
-Proof NZtimes_succ_l.
+Theorem Zmul_succ_l : forall n m : Z, (S n) * m == n * m + m.
+Proof NZmul_succ_l.
(* Theorems that are valid for both natural numbers and integers *)
-Theorem Ztimes_0_r : forall n : Z, n * 0 == 0.
-Proof NZtimes_0_r.
+Theorem Zmul_0_r : forall n : Z, n * 0 == 0.
+Proof NZmul_0_r.
-Theorem Ztimes_succ_r : forall n m : Z, n * (S m) == n * m + n.
-Proof NZtimes_succ_r.
+Theorem Zmul_succ_r : forall n m : Z, n * (S m) == n * m + n.
+Proof NZmul_succ_r.
-Theorem Ztimes_comm : forall n m : Z, n * m == m * n.
-Proof NZtimes_comm.
+Theorem Zmul_comm : forall n m : Z, n * m == m * n.
+Proof NZmul_comm.
-Theorem Ztimes_plus_distr_r : forall n m p : Z, (n + m) * p == n * p + m * p.
-Proof NZtimes_plus_distr_r.
+Theorem Zmul_add_distr_r : forall n m p : Z, (n + m) * p == n * p + m * p.
+Proof NZmul_add_distr_r.
-Theorem Ztimes_plus_distr_l : forall n m p : Z, n * (m + p) == n * m + n * p.
-Proof NZtimes_plus_distr_l.
+Theorem Zmul_add_distr_l : forall n m p : Z, n * (m + p) == n * m + n * p.
+Proof NZmul_add_distr_l.
(* A note on naming: right (correspondingly, left) distributivity happens
when the sum is multiplied by a number on the right (left), not when the
@@ -50,64 +50,64 @@ and mathworld.wolfram.com). In the old library BinInt, distributivity over
subtraction was named correctly, but distributivity over addition was named
incorrectly. The names in Isabelle/HOL library are also incorrect. *)
-Theorem Ztimes_assoc : forall n m p : Z, n * (m * p) == (n * m) * p.
-Proof NZtimes_assoc.
+Theorem Zmul_assoc : forall n m p : Z, n * (m * p) == (n * m) * p.
+Proof NZmul_assoc.
-Theorem Ztimes_1_l : forall n : Z, 1 * n == n.
-Proof NZtimes_1_l.
+Theorem Zmul_1_l : forall n : Z, 1 * n == n.
+Proof NZmul_1_l.
-Theorem Ztimes_1_r : forall n : Z, n * 1 == n.
-Proof NZtimes_1_r.
+Theorem Zmul_1_r : forall n : Z, n * 1 == n.
+Proof NZmul_1_r.
(* The following two theorems are true in an ordered ring,
but since they don't mention order, we'll put them here *)
-Theorem Zeq_times_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
-Proof NZeq_times_0.
+Theorem Zeq_mul_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
-Theorem Zneq_times_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
-Proof NZneq_times_0.
+Theorem Zneq_mul_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
(* Theorems that are either not valid on N or have different proofs on N and Z *)
-Theorem Ztimes_pred_r : forall n m : Z, n * (P m) == n * m - n.
+Theorem Zmul_pred_r : forall n m : Z, n * (P m) == n * m - n.
Proof.
intros n m.
rewrite <- (Zsucc_pred m) at 2.
-now rewrite Ztimes_succ_r, <- Zplus_minus_assoc, Zminus_diag, Zplus_0_r.
+now rewrite Zmul_succ_r, <- Zadd_minus_assoc, Zminus_diag, Zadd_0_r.
Qed.
-Theorem Ztimes_pred_l : forall n m : Z, (P n) * m == n * m - m.
+Theorem Zmul_pred_l : forall n m : Z, (P n) * m == n * m - m.
Proof.
-intros n m; rewrite (Ztimes_comm (P n) m), (Ztimes_comm n m). apply Ztimes_pred_r.
+intros n m; rewrite (Zmul_comm (P n) m), (Zmul_comm n m). apply Zmul_pred_r.
Qed.
-Theorem Ztimes_opp_l : forall n m : Z, (- n) * m == - (n * m).
+Theorem Zmul_opp_l : forall n m : Z, (- n) * m == - (n * m).
Proof.
-intros n m. apply -> Zplus_move_0_r.
-now rewrite <- Ztimes_plus_distr_r, Zplus_opp_diag_l, Ztimes_0_l.
+intros n m. apply -> Zadd_move_0_r.
+now rewrite <- Zmul_add_distr_r, Zadd_opp_diag_l, Zmul_0_l.
Qed.
-Theorem Ztimes_opp_r : forall n m : Z, n * (- m) == - (n * m).
+Theorem Zmul_opp_r : forall n m : Z, n * (- m) == - (n * m).
Proof.
-intros n m; rewrite (Ztimes_comm n (- m)), (Ztimes_comm n m); apply Ztimes_opp_l.
+intros n m; rewrite (Zmul_comm n (- m)), (Zmul_comm n m); apply Zmul_opp_l.
Qed.
-Theorem Ztimes_opp_opp : forall n m : Z, (- n) * (- m) == n * m.
+Theorem Zmul_opp_opp : forall n m : Z, (- n) * (- m) == n * m.
Proof.
-intros n m; now rewrite Ztimes_opp_l, Ztimes_opp_r, Zopp_involutive.
+intros n m; now rewrite Zmul_opp_l, Zmul_opp_r, Zopp_involutive.
Qed.
-Theorem Ztimes_minus_distr_l : forall n m p : Z, n * (m - p) == n * m - n * p.
+Theorem Zmul_minus_distr_l : forall n m p : Z, n * (m - p) == n * m - n * p.
Proof.
-intros n m p. do 2 rewrite <- Zplus_opp_r. rewrite Ztimes_plus_distr_l.
-now rewrite Ztimes_opp_r.
+intros n m p. do 2 rewrite <- Zadd_opp_r. rewrite Zmul_add_distr_l.
+now rewrite Zmul_opp_r.
Qed.
-Theorem Ztimes_minus_distr_r : forall n m p : Z, (n - m) * p == n * p - m * p.
+Theorem Zmul_minus_distr_r : forall n m p : Z, (n - m) * p == n * p - m * p.
Proof.
-intros n m p; rewrite (Ztimes_comm (n - m) p), (Ztimes_comm n p), (Ztimes_comm m p);
-now apply Ztimes_minus_distr_l.
+intros n m p; rewrite (Zmul_comm (n - m) p), (Zmul_comm n p), (Zmul_comm m p);
+now apply Zmul_minus_distr_l.
Qed.
End ZTimesPropFunct.