aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Numbers/Integer/Abstract/ZPlusOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZPlusOrder.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZPlusOrder.v216
1 files changed, 108 insertions, 108 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZPlusOrder.v b/theories/Numbers/Integer/Abstract/ZPlusOrder.v
index 3e6421819..85f671498 100644
--- a/theories/Numbers/Integer/Abstract/ZPlusOrder.v
+++ b/theories/Numbers/Integer/Abstract/ZPlusOrder.v
@@ -18,141 +18,141 @@ Open Local Scope IntScope.
(* Theorems that are true on both natural numbers and integers *)
-Theorem Zplus_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m.
-Proof NZplus_lt_mono_l.
+Theorem Zadd_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m.
+Proof NZadd_lt_mono_l.
-Theorem Zplus_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p.
-Proof NZplus_lt_mono_r.
+Theorem Zadd_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p.
+Proof NZadd_lt_mono_r.
-Theorem Zplus_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q.
-Proof NZplus_lt_mono.
+Theorem Zadd_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q.
+Proof NZadd_lt_mono.
-Theorem Zplus_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m.
-Proof NZplus_le_mono_l.
+Theorem Zadd_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m.
+Proof NZadd_le_mono_l.
-Theorem Zplus_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p.
-Proof NZplus_le_mono_r.
+Theorem Zadd_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p.
+Proof NZadd_le_mono_r.
-Theorem Zplus_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q.
-Proof NZplus_le_mono.
+Theorem Zadd_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q.
+Proof NZadd_le_mono.
-Theorem Zplus_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q.
-Proof NZplus_lt_le_mono.
+Theorem Zadd_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q.
+Proof NZadd_lt_le_mono.
-Theorem Zplus_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q.
-Proof NZplus_le_lt_mono.
+Theorem Zadd_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q.
+Proof NZadd_le_lt_mono.
-Theorem Zplus_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n + m.
-Proof NZplus_pos_pos.
+Theorem Zadd_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n + m.
+Proof NZadd_pos_pos.
-Theorem Zplus_pos_nonneg : forall n m : Z, 0 < n -> 0 <= m -> 0 < n + m.
-Proof NZplus_pos_nonneg.
+Theorem Zadd_pos_nonneg : forall n m : Z, 0 < n -> 0 <= m -> 0 < n + m.
+Proof NZadd_pos_nonneg.
-Theorem Zplus_nonneg_pos : forall n m : Z, 0 <= n -> 0 < m -> 0 < n + m.
-Proof NZplus_nonneg_pos.
+Theorem Zadd_nonneg_pos : forall n m : Z, 0 <= n -> 0 < m -> 0 < n + m.
+Proof NZadd_nonneg_pos.
-Theorem Zplus_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n + m.
-Proof NZplus_nonneg_nonneg.
+Theorem Zadd_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n + m.
+Proof NZadd_nonneg_nonneg.
-Theorem Zlt_plus_pos_l : forall n m : Z, 0 < n -> m < n + m.
-Proof NZlt_plus_pos_l.
+Theorem Zlt_add_pos_l : forall n m : Z, 0 < n -> m < n + m.
+Proof NZlt_add_pos_l.
-Theorem Zlt_plus_pos_r : forall n m : Z, 0 < n -> m < m + n.
-Proof NZlt_plus_pos_r.
+Theorem Zlt_add_pos_r : forall n m : Z, 0 < n -> m < m + n.
+Proof NZlt_add_pos_r.
-Theorem Zle_lt_plus_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q.
-Proof NZle_lt_plus_lt.
+Theorem Zle_lt_add_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q.
+Proof NZle_lt_add_lt.
-Theorem Zlt_le_plus_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q.
-Proof NZlt_le_plus_lt.
+Theorem Zlt_le_add_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q.
+Proof NZlt_le_add_lt.
-Theorem Zle_le_plus_le : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q.
-Proof NZle_le_plus_le.
+Theorem Zle_le_add_le : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q.
+Proof NZle_le_add_le.
-Theorem Zplus_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q.
-Proof NZplus_lt_cases.
+Theorem Zadd_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q.
+Proof NZadd_lt_cases.
-Theorem Zplus_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q.
-Proof NZplus_le_cases.
+Theorem Zadd_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q.
+Proof NZadd_le_cases.
-Theorem Zplus_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0.
-Proof NZplus_neg_cases.
+Theorem Zadd_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0.
+Proof NZadd_neg_cases.
-Theorem Zplus_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m.
-Proof NZplus_pos_cases.
+Theorem Zadd_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m.
+Proof NZadd_pos_cases.
-Theorem Zplus_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0.
-Proof NZplus_nonpos_cases.
+Theorem Zadd_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0.
+Proof NZadd_nonpos_cases.
-Theorem Zplus_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m.
-Proof NZplus_nonneg_cases.
+Theorem Zadd_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m.
+Proof NZadd_nonneg_cases.
(* Theorems that are either not valid on N or have different proofs on N and Z *)
-Theorem Zplus_neg_neg : forall n m : Z, n < 0 -> m < 0 -> n + m < 0.
+Theorem Zadd_neg_neg : forall n m : Z, n < 0 -> m < 0 -> n + m < 0.
Proof.
-intros n m H1 H2. rewrite <- (Zplus_0_l 0). now apply Zplus_lt_mono.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_mono.
Qed.
-Theorem Zplus_neg_nonpos : forall n m : Z, n < 0 -> m <= 0 -> n + m < 0.
+Theorem Zadd_neg_nonpos : forall n m : Z, n < 0 -> m <= 0 -> n + m < 0.
Proof.
-intros n m H1 H2. rewrite <- (Zplus_0_l 0). now apply Zplus_lt_le_mono.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_le_mono.
Qed.
-Theorem Zplus_nonpos_neg : forall n m : Z, n <= 0 -> m < 0 -> n + m < 0.
+Theorem Zadd_nonpos_neg : forall n m : Z, n <= 0 -> m < 0 -> n + m < 0.
Proof.
-intros n m H1 H2. rewrite <- (Zplus_0_l 0). now apply Zplus_le_lt_mono.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_lt_mono.
Qed.
-Theorem Zplus_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> n + m <= 0.
+Theorem Zadd_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> n + m <= 0.
Proof.
-intros n m H1 H2. rewrite <- (Zplus_0_l 0). now apply Zplus_le_mono.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_mono.
Qed.
(** Minus and order *)
Theorem Zlt_0_minus : forall n m : Z, 0 < m - n <-> n < m.
Proof.
-intros n m. stepl (0 + n < m - n + n) by symmetry; apply Zplus_lt_mono_r.
-rewrite Zplus_0_l; now rewrite Zminus_simpl_r.
+intros n m. stepl (0 + n < m - n + n) by symmetry; apply Zadd_lt_mono_r.
+rewrite Zadd_0_l; now rewrite Zminus_simpl_r.
Qed.
Notation Zminus_pos := Zlt_0_minus (only parsing).
Theorem Zle_0_minus : forall n m : Z, 0 <= m - n <-> n <= m.
Proof.
-intros n m; stepl (0 + n <= m - n + n) by symmetry; apply Zplus_le_mono_r.
-rewrite Zplus_0_l; now rewrite Zminus_simpl_r.
+intros n m; stepl (0 + n <= m - n + n) by symmetry; apply Zadd_le_mono_r.
+rewrite Zadd_0_l; now rewrite Zminus_simpl_r.
Qed.
Notation Zminus_nonneg := Zle_0_minus (only parsing).
Theorem Zlt_minus_0 : forall n m : Z, n - m < 0 <-> n < m.
Proof.
-intros n m. stepl (n - m + m < 0 + m) by symmetry; apply Zplus_lt_mono_r.
-rewrite Zplus_0_l; now rewrite Zminus_simpl_r.
+intros n m. stepl (n - m + m < 0 + m) by symmetry; apply Zadd_lt_mono_r.
+rewrite Zadd_0_l; now rewrite Zminus_simpl_r.
Qed.
Notation Zminus_neg := Zlt_minus_0 (only parsing).
Theorem Zle_minus_0 : forall n m : Z, n - m <= 0 <-> n <= m.
Proof.
-intros n m. stepl (n - m + m <= 0 + m) by symmetry; apply Zplus_le_mono_r.
-rewrite Zplus_0_l; now rewrite Zminus_simpl_r.
+intros n m. stepl (n - m + m <= 0 + m) by symmetry; apply Zadd_le_mono_r.
+rewrite Zadd_0_l; now rewrite Zminus_simpl_r.
Qed.
Notation Zminus_nonpos := Zle_minus_0 (only parsing).
Theorem Zopp_lt_mono : forall n m : Z, n < m <-> - m < - n.
Proof.
-intros n m. stepr (m + - m < m + - n) by symmetry; apply Zplus_lt_mono_l.
-do 2 rewrite Zplus_opp_r. rewrite Zminus_diag. symmetry; apply Zlt_0_minus.
+intros n m. stepr (m + - m < m + - n) by symmetry; apply Zadd_lt_mono_l.
+do 2 rewrite Zadd_opp_r. rewrite Zminus_diag. symmetry; apply Zlt_0_minus.
Qed.
Theorem Zopp_le_mono : forall n m : Z, n <= m <-> - m <= - n.
Proof.
-intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zplus_le_mono_l.
-do 2 rewrite Zplus_opp_r. rewrite Zminus_diag. symmetry; apply Zle_0_minus.
+intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zadd_le_mono_l.
+do 2 rewrite Zadd_opp_r. rewrite Zminus_diag. symmetry; apply Zle_0_minus.
Qed.
Theorem Zopp_pos_neg : forall n : Z, 0 < - n <-> n < 0.
@@ -177,13 +177,13 @@ Qed.
Theorem Zminus_lt_mono_l : forall n m p : Z, n < m <-> p - m < p - n.
Proof.
-intros n m p. do 2 rewrite <- Zplus_opp_r. rewrite <- Zplus_lt_mono_l.
+intros n m p. do 2 rewrite <- Zadd_opp_r. rewrite <- Zadd_lt_mono_l.
apply Zopp_lt_mono.
Qed.
Theorem Zminus_lt_mono_r : forall n m p : Z, n < m <-> n - p < m - p.
Proof.
-intros n m p; do 2 rewrite <- Zplus_opp_r; apply Zplus_lt_mono_r.
+intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_lt_mono_r.
Qed.
Theorem Zminus_lt_mono : forall n m p q : Z, n < m -> q < p -> n - p < m - q.
@@ -195,13 +195,13 @@ Qed.
Theorem Zminus_le_mono_l : forall n m p : Z, n <= m <-> p - m <= p - n.
Proof.
-intros n m p; do 2 rewrite <- Zplus_opp_r; rewrite <- Zplus_le_mono_l;
+intros n m p; do 2 rewrite <- Zadd_opp_r; rewrite <- Zadd_le_mono_l;
apply Zopp_le_mono.
Qed.
Theorem Zminus_le_mono_r : forall n m p : Z, n <= m <-> n - p <= m - p.
Proof.
-intros n m p; do 2 rewrite <- Zplus_opp_r; apply Zplus_le_mono_r.
+intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_le_mono_r.
Qed.
Theorem Zminus_le_mono : forall n m p q : Z, n <= m -> q <= p -> n - p <= m - q.
@@ -227,76 +227,76 @@ Qed.
Theorem Zle_lt_minus_lt : forall n m p q : Z, n <= m -> p - n < q - m -> p < q.
Proof.
-intros n m p q H1 H2. apply (Zle_lt_plus_lt (- m) (- n));
-[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_r].
+intros n m p q H1 H2. apply (Zle_lt_add_lt (- m) (- n));
+[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r].
Qed.
Theorem Zlt_le_minus_lt : forall n m p q : Z, n < m -> p - n <= q - m -> p < q.
Proof.
-intros n m p q H1 H2. apply (Zlt_le_plus_lt (- m) (- n));
-[now apply -> Zopp_lt_mono | now do 2 rewrite Zplus_opp_r].
+intros n m p q H1 H2. apply (Zlt_le_add_lt (- m) (- n));
+[now apply -> Zopp_lt_mono | now do 2 rewrite Zadd_opp_r].
Qed.
Theorem Zle_le_minus_lt : forall n m p q : Z, n <= m -> p - n <= q - m -> p <= q.
Proof.
-intros n m p q H1 H2. apply (Zle_le_plus_le (- m) (- n));
-[now apply -> Zopp_le_mono | now do 2 rewrite Zplus_opp_r].
+intros n m p q H1 H2. apply (Zle_le_add_le (- m) (- n));
+[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r].
Qed.
-Theorem Zlt_plus_lt_minus_r : forall n m p : Z, n + p < m <-> n < m - p.
+Theorem Zlt_add_lt_minus_r : forall n m p : Z, n + p < m <-> n < m - p.
Proof.
intros n m p. stepl (n + p - p < m - p) by symmetry; apply Zminus_lt_mono_r.
-now rewrite Zplus_simpl_r.
+now rewrite Zadd_simpl_r.
Qed.
-Theorem Zle_plus_le_minus_r : forall n m p : Z, n + p <= m <-> n <= m - p.
+Theorem Zle_add_le_minus_r : forall n m p : Z, n + p <= m <-> n <= m - p.
Proof.
intros n m p. stepl (n + p - p <= m - p) by symmetry; apply Zminus_le_mono_r.
-now rewrite Zplus_simpl_r.
+now rewrite Zadd_simpl_r.
Qed.
-Theorem Zlt_plus_lt_minus_l : forall n m p : Z, n + p < m <-> p < m - n.
+Theorem Zlt_add_lt_minus_l : forall n m p : Z, n + p < m <-> p < m - n.
Proof.
-intros n m p. rewrite Zplus_comm; apply Zlt_plus_lt_minus_r.
+intros n m p. rewrite Zadd_comm; apply Zlt_add_lt_minus_r.
Qed.
-Theorem Zle_plus_le_minus_l : forall n m p : Z, n + p <= m <-> p <= m - n.
+Theorem Zle_add_le_minus_l : forall n m p : Z, n + p <= m <-> p <= m - n.
Proof.
-intros n m p. rewrite Zplus_comm; apply Zle_plus_le_minus_r.
+intros n m p. rewrite Zadd_comm; apply Zle_add_le_minus_r.
Qed.
-Theorem Zlt_minus_lt_plus_r : forall n m p : Z, n - p < m <-> n < m + p.
+Theorem Zlt_minus_lt_add_r : forall n m p : Z, n - p < m <-> n < m + p.
Proof.
-intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zplus_lt_mono_r.
+intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zadd_lt_mono_r.
now rewrite Zminus_simpl_r.
Qed.
-Theorem Zle_minus_le_plus_r : forall n m p : Z, n - p <= m <-> n <= m + p.
+Theorem Zle_minus_le_add_r : forall n m p : Z, n - p <= m <-> n <= m + p.
Proof.
-intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zplus_le_mono_r.
+intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zadd_le_mono_r.
now rewrite Zminus_simpl_r.
Qed.
-Theorem Zlt_minus_lt_plus_l : forall n m p : Z, n - m < p <-> n < m + p.
+Theorem Zlt_minus_lt_add_l : forall n m p : Z, n - m < p <-> n < m + p.
Proof.
-intros n m p. rewrite Zplus_comm; apply Zlt_minus_lt_plus_r.
+intros n m p. rewrite Zadd_comm; apply Zlt_minus_lt_add_r.
Qed.
-Theorem Zle_minus_le_plus_l : forall n m p : Z, n - m <= p <-> n <= m + p.
+Theorem Zle_minus_le_add_l : forall n m p : Z, n - m <= p <-> n <= m + p.
Proof.
-intros n m p. rewrite Zplus_comm; apply Zle_minus_le_plus_r.
+intros n m p. rewrite Zadd_comm; apply Zle_minus_le_add_r.
Qed.
-Theorem Zlt_minus_lt_plus : forall n m p q : Z, n - m < p - q <-> n + q < m + p.
+Theorem Zlt_minus_lt_add : forall n m p q : Z, n - m < p - q <-> n + q < m + p.
Proof.
-intros n m p q. rewrite Zlt_minus_lt_plus_l. rewrite Zplus_minus_assoc.
-now rewrite <- Zlt_plus_lt_minus_r.
+intros n m p q. rewrite Zlt_minus_lt_add_l. rewrite Zadd_minus_assoc.
+now rewrite <- Zlt_add_lt_minus_r.
Qed.
-Theorem Zle_minus_le_plus : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p.
+Theorem Zle_minus_le_add : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p.
Proof.
-intros n m p q. rewrite Zle_minus_le_plus_l. rewrite Zplus_minus_assoc.
-now rewrite <- Zle_plus_le_minus_r.
+intros n m p q. rewrite Zle_minus_le_add_l. rewrite Zadd_minus_assoc.
+now rewrite <- Zle_add_le_minus_r.
Qed.
Theorem Zlt_minus_pos : forall n m : Z, 0 < m <-> n - m < n.
@@ -311,40 +311,40 @@ Qed.
Theorem Zminus_lt_cases : forall n m p q : Z, n - m < p - q -> n < m \/ q < p.
Proof.
-intros n m p q H. rewrite Zlt_minus_lt_plus in H. now apply Zplus_lt_cases.
+intros n m p q H. rewrite Zlt_minus_lt_add in H. now apply Zadd_lt_cases.
Qed.
Theorem Zminus_le_cases : forall n m p q : Z, n - m <= p - q -> n <= m \/ q <= p.
Proof.
-intros n m p q H. rewrite Zle_minus_le_plus in H. now apply Zplus_le_cases.
+intros n m p q H. rewrite Zle_minus_le_add in H. now apply Zadd_le_cases.
Qed.
Theorem Zminus_neg_cases : forall n m : Z, n - m < 0 -> n < 0 \/ 0 < m.
Proof.
-intros n m H; rewrite <- Zplus_opp_r in H.
+intros n m H; rewrite <- Zadd_opp_r in H.
setoid_replace (0 < m) with (- m < 0) using relation iff by (symmetry; apply Zopp_neg_pos).
-now apply Zplus_neg_cases.
+now apply Zadd_neg_cases.
Qed.
Theorem Zminus_pos_cases : forall n m : Z, 0 < n - m -> 0 < n \/ m < 0.
Proof.
-intros n m H; rewrite <- Zplus_opp_r in H.
+intros n m H; rewrite <- Zadd_opp_r in H.
setoid_replace (m < 0) with (0 < - m) using relation iff by (symmetry; apply Zopp_pos_neg).
-now apply Zplus_pos_cases.
+now apply Zadd_pos_cases.
Qed.
Theorem Zminus_nonpos_cases : forall n m : Z, n - m <= 0 -> n <= 0 \/ 0 <= m.
Proof.
-intros n m H; rewrite <- Zplus_opp_r in H.
+intros n m H; rewrite <- Zadd_opp_r in H.
setoid_replace (0 <= m) with (- m <= 0) using relation iff by (symmetry; apply Zopp_nonpos_nonneg).
-now apply Zplus_nonpos_cases.
+now apply Zadd_nonpos_cases.
Qed.
Theorem Zminus_nonneg_cases : forall n m : Z, 0 <= n - m -> 0 <= n \/ m <= 0.
Proof.
-intros n m H; rewrite <- Zplus_opp_r in H.
+intros n m H; rewrite <- Zadd_opp_r in H.
setoid_replace (m <= 0) with (0 <= - m) using relation iff by (symmetry; apply Zopp_nonneg_nonpos).
-now apply Zplus_nonneg_cases.
+now apply Zadd_nonneg_cases.
Qed.
Section PosNeg.