aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Num/Nat/Axioms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Num/Nat/Axioms.v')
-rw-r--r--theories/Num/Nat/Axioms.v83
1 files changed, 83 insertions, 0 deletions
diff --git a/theories/Num/Nat/Axioms.v b/theories/Num/Nat/Axioms.v
new file mode 100644
index 000000000..3210cbd71
--- /dev/null
+++ b/theories/Num/Nat/Axioms.v
@@ -0,0 +1,83 @@
+(*i $Id: i*)
+
+(*s Axioms for the basic numerical operations *)
+Require Export Params.
+Require Export EqAxioms.
+Require NSyntax.
+
+(*s Lemmas for [add] *)
+
+Lemma add_Sx_y : (x,y:N)((S x)+y)=(S (x+y)).
+Induction y; Simpl; Auto with nat.
+Save.
+Hints Resolve add_Sx_y : nat.
+
+(*s Lemmas for [add] *)
+
+Lemma add_0_x : (x:N)(zero+x)=x.
+Induction x; Simpl; Auto with nat.
+Save.
+Hints Resolve add_0_x : nat.
+
+Lemma add_sym : (x,y:N)(x+y)=(y+x).
+Intros x y; Elim y; Simpl; Intros; Auto with nat.
+Rewrite H; Elim x; Simpl; Intros; Auto with nat.
+Save.
+Hints Resolve add_sym : nat.
+
+Lemma add_eq_compat : (x1,x2,y1,y2:N)(x1=x2)->(y1=y2)->(x1+y1)=(x2+y2).
+Intros x1 x2 y1 y2 eq1 eq2; Rewrite eq1; Rewrite eq2; Auto.
+Save.
+Hints Resolve add_eq_compat : nat.
+
+Lemma add_assoc_l : (x,y,z:N)((x+y)+z)=(x+(y+z)).
+Intros x y z; Elim z; Simpl; Intros; Auto with nat.
+Save.
+
+
+
+(*s Lemmas for [one] *)
+Lemma S_0_1 : (S zero)=one.
+Auto.
+Save.
+
+(*s Lemmas for [<],
+ properties of [>], [<=] and [>=] will be derived from [<] *)
+
+Lemma lt_trans : (x,y,z:N)x<y->y<z->x<z.
+Intros x y z lt1 lt2; Elim lt2; Unfold lt; Auto with nat.
+Save.
+Hints Resolve lt_trans : nat.
+
+Lemma lt_x_Sx : (x:N)x<(S x).
+Unfold lt; Auto with nat.
+Save.
+Hints Resolve lt_x_Sx : nat.
+
+Lemma lt_S_compat : (x,y:N)(x<y)->(S x)<(S y).
+Intros x y lt1; Elim lt1; Unfold lt; Auto with nat.
+Save.
+Hints Resolve lt_S_compat : nat.
+
+Lemma lt_eq_compat : (x1,x2,y1,y2:N)(x1=y1)->(x2=y2)->(x1<x2)->(y1<y2).
+Intros x1 x2 y1 y2 eq1 eq2; Rewrite eq1; Rewrite eq2; Trivial.
+Save.
+
+Lemma lt_add_compat_l : (x,y,z:N)(x<y)->((x+z)<(y+z)).
+Intros x y z lt1; Elim z; Simpl; Auto with nat.
+Save.
+
+Lemma lt_Sx_Sy_lt : (x,y:N)((S x)<(S y))->(x<y).
+Intros x y lt1; Inversion lt1; EAuto with nat.
+Save.
+Hints Immediate lt_Sx_Sy_lt : nat.
+
+Lemma lt_anti_refl : (x:N)~(x<x).
+Induction x; Red; Intros.
+Inversion H.
+Auto with nat.
+Save.
+
+
+
+ \ No newline at end of file