diff options
Diffstat (limited to 'theories/Num/Nat/Axioms.v')
-rw-r--r-- | theories/Num/Nat/Axioms.v | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/theories/Num/Nat/Axioms.v b/theories/Num/Nat/Axioms.v new file mode 100644 index 000000000..3210cbd71 --- /dev/null +++ b/theories/Num/Nat/Axioms.v @@ -0,0 +1,83 @@ +(*i $Id: i*) + +(*s Axioms for the basic numerical operations *) +Require Export Params. +Require Export EqAxioms. +Require NSyntax. + +(*s Lemmas for [add] *) + +Lemma add_Sx_y : (x,y:N)((S x)+y)=(S (x+y)). +Induction y; Simpl; Auto with nat. +Save. +Hints Resolve add_Sx_y : nat. + +(*s Lemmas for [add] *) + +Lemma add_0_x : (x:N)(zero+x)=x. +Induction x; Simpl; Auto with nat. +Save. +Hints Resolve add_0_x : nat. + +Lemma add_sym : (x,y:N)(x+y)=(y+x). +Intros x y; Elim y; Simpl; Intros; Auto with nat. +Rewrite H; Elim x; Simpl; Intros; Auto with nat. +Save. +Hints Resolve add_sym : nat. + +Lemma add_eq_compat : (x1,x2,y1,y2:N)(x1=x2)->(y1=y2)->(x1+y1)=(x2+y2). +Intros x1 x2 y1 y2 eq1 eq2; Rewrite eq1; Rewrite eq2; Auto. +Save. +Hints Resolve add_eq_compat : nat. + +Lemma add_assoc_l : (x,y,z:N)((x+y)+z)=(x+(y+z)). +Intros x y z; Elim z; Simpl; Intros; Auto with nat. +Save. + + + +(*s Lemmas for [one] *) +Lemma S_0_1 : (S zero)=one. +Auto. +Save. + +(*s Lemmas for [<], + properties of [>], [<=] and [>=] will be derived from [<] *) + +Lemma lt_trans : (x,y,z:N)x<y->y<z->x<z. +Intros x y z lt1 lt2; Elim lt2; Unfold lt; Auto with nat. +Save. +Hints Resolve lt_trans : nat. + +Lemma lt_x_Sx : (x:N)x<(S x). +Unfold lt; Auto with nat. +Save. +Hints Resolve lt_x_Sx : nat. + +Lemma lt_S_compat : (x,y:N)(x<y)->(S x)<(S y). +Intros x y lt1; Elim lt1; Unfold lt; Auto with nat. +Save. +Hints Resolve lt_S_compat : nat. + +Lemma lt_eq_compat : (x1,x2,y1,y2:N)(x1=y1)->(x2=y2)->(x1<x2)->(y1<y2). +Intros x1 x2 y1 y2 eq1 eq2; Rewrite eq1; Rewrite eq2; Trivial. +Save. + +Lemma lt_add_compat_l : (x,y,z:N)(x<y)->((x+z)<(y+z)). +Intros x y z lt1; Elim z; Simpl; Auto with nat. +Save. + +Lemma lt_Sx_Sy_lt : (x,y:N)((S x)<(S y))->(x<y). +Intros x y lt1; Inversion lt1; EAuto with nat. +Save. +Hints Immediate lt_Sx_Sy_lt : nat. + +Lemma lt_anti_refl : (x:N)~(x<x). +Induction x; Red; Intros. +Inversion H. +Auto with nat. +Save. + + + +
\ No newline at end of file |