diff options
Diffstat (limited to 'theories/NArith')
-rw-r--r-- | theories/NArith/BinNat.v | 257 | ||||
-rw-r--r-- | theories/NArith/BinNatDef.v | 1 |
2 files changed, 138 insertions, 120 deletions
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v index f150f12c8..2e3b7c49d 100644 --- a/theories/NArith/BinNat.v +++ b/theories/NArith/BinNat.v @@ -27,7 +27,7 @@ Local Open Scope N_scope. are placed in a module [N] for qualification purpose. *) Module N - <: NAxiomsMiniSig + <: NAxiomsSig <: UsualOrderedTypeFull <: UsualDecidableTypeFull <: TotalOrder. @@ -38,8 +38,8 @@ Include BinNatDef.N. (** Logical predicates *) -Definition eq := @Logic.eq t. -Definition eq_equiv := @eq_equivalence t. +Definition eq := @Logic.eq N. +Definition eq_equiv := @eq_equivalence N. Definition lt x y := (x ?= y) = Lt. Definition gt x y := (x ?= y) = Gt. @@ -145,18 +145,6 @@ Proof. apply peano_rect_succ. Qed. -(** Properties of double *) - -Lemma double_spec n : double n = 2 * n. -Proof. - reflexivity. -Qed. - -Lemma succ_double_spec n : succ_double n = 2 * n + 1. -Proof. - now destruct n. -Qed. - (** Properties of mixed successor and predecessor. *) Lemma pos_pred_spec p : Pos.pred_N p = pred (Npos p). @@ -324,14 +312,6 @@ Qed. Module Import BootStrap. -Theorem succ_inj n m : succ n = succ m -> n = m. -Proof. -destruct n as [|p], m as [|q]; intro H; simpl in *; trivial; destr_eq H. - now destruct (Pos.succ_not_1 q). - now destruct (Pos.succ_not_1 p). - f_equal. now apply Pos.succ_inj. -Qed. - Theorem add_0_r n : n + 0 = n. Proof. now destruct n. @@ -362,53 +342,16 @@ Proof. rewrite <- H1 in H. now destruct H. Qed. -Theorem mul_1_l n : 1 * n = n. -Proof. -now destruct n. -Qed. - Theorem mul_comm n m : n * m = m * n. Proof. destruct n, m; simpl; trivial. f_equal. apply Pos.mul_comm. Qed. -Theorem mul_assoc n m p : n * (m * p) = n * m * p. -Proof. -destruct n; try reflexivity. -destruct m; try reflexivity. -destruct p; try reflexivity. -simpl. f_equal. apply Pos.mul_assoc. -Qed. - -Theorem mul_add_distr_r n m p : (n + m) * p = n * p + m * p. -Proof. -destruct n; try reflexivity. -destruct m, p; try reflexivity. -simpl. f_equal. apply Pos.mul_add_distr_r. -Qed. - -Theorem mul_add_distr_l n m p : n * (m + p) = n * m + n * p. -Proof. -rewrite !(mul_comm n); apply mul_add_distr_r. -Qed. - Lemma le_0_l n : 0<=n. Proof. now destruct n. Qed. -Theorem lt_trans n m q : n < m -> m < q -> n < q. -Proof. -destruct n, m, q; try easy. eapply Pos.lt_trans; eauto. -Qed. - -Lemma le_trans n m p : n<=m -> m<=p -> n<=p. -Proof. - rewrite 3 lt_eq_cases. intros [H|H] [H'|H']; subst; - (now right) || left; trivial. - now apply lt_trans with m. -Qed. - Lemma add_lt_cancel_l n m p : p+n < p+m -> n<m. Proof. intro H. destruct p. simpl; auto. @@ -423,38 +366,40 @@ Qed. End BootStrap. -(** Specification of minimum and maximum *) -Theorem min_l n m : n <= m -> min n m = n. +(** Properties of [double] and [succ_double] *) + +Lemma double_spec n : double n = 2 * n. Proof. -unfold min, le. case compare; trivial. now destruct 1. + reflexivity. Qed. -Theorem min_r n m : m <= n -> min n m = m. +Lemma succ_double_spec n : succ_double n = 2 * n + 1. Proof. -unfold min, le. rewrite <- compare_antisym. -case compare_spec; trivial. now destruct 2. + now destruct n. Qed. -Theorem max_l n m : m <= n -> max n m = n. +Lemma double_add n m : double (n+m) = double n + double m. Proof. -unfold max, le. rewrite <- compare_antisym. -case compare_spec; auto. now destruct 2. + now destruct n, m. Qed. -Theorem max_r n m : n <= m -> max n m = m. +Lemma succ_double_add n m : succ_double (n+m) = double n + succ_double m. Proof. -unfold max, le. case compare; trivial. now destruct 1. + now destruct n, m. Qed. -(** 0 is the least natural number *) - -Theorem compare_0_r n : (n ?= 0) <> Lt. +Lemma double_mul n m : double (n*m) = double n * m. Proof. -now destruct n. + now destruct n, m. Qed. -(** Dividing by 2 *) +Lemma succ_double_mul n m : + succ_double n * m = double n * m + m. +Proof. + destruct n; simpl; destruct m; trivial. + now rewrite Pos.add_comm. +Qed. Lemma div2_double n : div2 (double n) = n. Proof. @@ -476,7 +421,45 @@ Proof. intro H. rewrite <- (div2_succ_double n), H. apply div2_succ_double. Qed. -(** Speficications of power *) +Lemma succ_double_lt n m : n<m -> succ_double n < double m. +Proof. + destruct n as [|n], m as [|m]; intros H; try easy. + unfold lt in *; simpl in *. now rewrite Pos.compare_xI_xO, H. +Qed. + + +(** Specification of minimum and maximum *) + +Theorem min_l n m : n <= m -> min n m = n. +Proof. +unfold min, le. case compare; trivial. now destruct 1. +Qed. + +Theorem min_r n m : m <= n -> min n m = m. +Proof. +unfold min, le. rewrite <- compare_antisym. +case compare_spec; trivial. now destruct 2. +Qed. + +Theorem max_l n m : m <= n -> max n m = n. +Proof. +unfold max, le. rewrite <- compare_antisym. +case compare_spec; auto. now destruct 2. +Qed. + +Theorem max_r n m : n <= m -> max n m = m. +Proof. +unfold max, le. case compare; trivial. now destruct 1. +Qed. + +(** 0 is the least natural number *) + +Theorem compare_0_r n : (n ?= 0) <> Lt. +Proof. +now destruct n. +Qed. + +(** Specifications of power *) Lemma pow_0_r n : n ^ 0 = 1. Proof. reflexivity. Qed. @@ -494,13 +477,28 @@ Qed. (** Specification of Base-2 logarithm *) +Lemma size_log2 n : n<>0 -> size n = succ (log2 n). +Proof. + destruct n as [|[n|n| ]]; trivial. now destruct 1. +Qed. + +Lemma size_gt n : n < 2^(size n). +Proof. + destruct n. reflexivity. simpl. apply Pos.size_gt. +Qed. + +Lemma size_le n : 2^(size n) <= succ_double n. +Proof. + destruct n. discriminate. simpl. + change (2^Pos.size p <= Pos.succ (p~0))%positive. + apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le. +Qed. + Lemma log2_spec n : 0 < n -> 2^(log2 n) <= n < 2^(succ (log2 n)). Proof. destruct n as [|[p|p|]]; discriminate || intros _; simpl; split. - eapply le_trans with (Npos (p~0)). - apply Pos.size_le. - apply lt_eq_cases; left. apply Pos.lt_succ_diag_r. + apply (size_le (Npos p)). apply Pos.size_gt. apply Pos.size_le. apply Pos.size_gt. @@ -513,24 +511,6 @@ Proof. destruct n; intros Hn. reflexivity. now destruct Hn. Qed. -Lemma size_log2 n : n<>0 -> size n = succ (log2 n). -Proof. - destruct n as [|[n|n| ]]; trivial. now destruct 1. -Qed. - -Lemma size_gt n : n < 2^(size n). -Proof. - destruct n. reflexivity. simpl. apply Pos.size_gt. -Qed. - -Lemma size_le n : 2^(size n) <= succ_double n. -Proof. - destruct n. discriminate. - simpl. apply le_trans with (Npos (p~0)). - apply Pos.size_le. - apply lt_eq_cases. left. apply Pos.lt_succ_diag_r. -Qed. - (** Specification of parity functions *) Lemma even_spec n : even n = true <-> Even n. @@ -563,21 +543,17 @@ Proof. induction a; cbv beta iota delta [pos_div_eucl]; fold pos_div_eucl; cbv zeta. (* a~1 *) destruct pos_div_eucl as (q,r). - assert (Npos a~1 = (double q)*b + succ_double r). - rewrite succ_double_spec, double_spec. - now rewrite add_assoc, <- mul_assoc, <- mul_add_distr_l, <- IHa. - case leb_spec; intros H'; trivial. - rewrite (succ_double_spec q), mul_add_distr_r, <- double_spec, - mul_1_l, <- add_assoc. + change (Npos a~1) with (succ_double (Npos a)). + rewrite IHa, succ_double_add, double_mul. + case leb_spec; intros H; trivial. + rewrite succ_double_mul, <- add_assoc. f_equal. now rewrite (add_comm b), sub_add. (* a~0 *) destruct pos_div_eucl as (q,r). - assert (Npos a~0 = (double q)*b + double r). - rewrite (double_spec q), (double_spec r). (* BUG: !double_spec *) - now rewrite <- mul_assoc, <- mul_add_distr_l, <- IHa. - case leb_spec; intros H'; trivial. - rewrite (succ_double_spec q), mul_add_distr_r, <- double_spec, - mul_1_l, <- add_assoc. + change (Npos a~0) with (double (Npos a)). + rewrite IHa, double_add, double_mul. + case leb_spec; intros H; trivial. + rewrite succ_double_mul, <- add_assoc. f_equal. now rewrite (add_comm b), sub_add. (* 1 *) now destruct b as [|[ | | ]]. @@ -602,12 +578,6 @@ Proof. intros _. apply div_mod'. Qed. -Lemma succ_double_lt n m : n<m -> succ_double n < double m. -Proof. - destruct n as [|n], m as [|m]; intros H; try easy. - unfold lt in *; simpl in *. now rewrite Pos.compare_xI_xO, H. -Qed. - Theorem pos_div_eucl_remainder (a:positive) (b:N) : b<>0 -> snd (pos_div_eucl a b) < b. Proof. @@ -898,7 +868,7 @@ Proof. reflexivity. Qed. Definition pred_0 : pred 0 = 0. Proof. reflexivity. Qed. -(** Proof of morphisms, obvious since eq is Leibniz *) +(** Proofs of morphisms, obvious since eq is Leibniz *) Local Obligation Tactic := simpl_relation. Program Definition succ_wd : Proper (eq==>eq) succ := _. @@ -947,10 +917,57 @@ Qed. (** Instantiation of generic properties of natural numbers *) -Include !NProp - <+ !UsualMinMaxLogicalProperties <+ !UsualMinMaxDecProperties. +Set Inline Level 30. (* For inlining only t eq zero one two *) + +Include NProp + <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. + +(** Auxiliary results about right shift on positive numbers, + used in BinInt *) -(* TODO : avoir un inlining selectif : t eq zero one two *) +Lemma pos_pred_shiftl_low : forall p n m, m<n -> + testbit (Pos.pred_N (Pos.shiftl p n)) m = true. +Proof. + induction n using peano_ind. + now destruct m. + intros m H. unfold Pos.shiftl. + destruct n as [|n]; simpl in *. + destruct m. now destruct p. elim (Pos.nlt_1_r _ H). + rewrite Pos.iter_succ. simpl. + set (u:=Pos.iter n xO p) in *; clearbody u. + destruct m as [|m]. now destruct u. + rewrite <- (IHn (Pos.pred_N m)). + rewrite <- (testbit_odd_succ _ (Pos.pred_N m)). + rewrite succ_pos_pred. now destruct u. + apply le_0_l. + apply succ_lt_mono. now rewrite succ_pos_pred. +Qed. + +Lemma pos_pred_shiftl_high : forall p n m, n<=m -> + testbit (Pos.pred_N (Pos.shiftl p n)) m = + testbit (shiftl (Pos.pred_N p) n) m. +Proof. + induction n using peano_ind; intros m H. + unfold shiftl. simpl. now destruct (Pos.pred_N p). + rewrite shiftl_succ_r. + destruct n as [|n]. + destruct m as [|m]. now destruct H. now destruct p. + destruct m as [|m]. now destruct H. + rewrite <- (succ_pos_pred m). + rewrite double_spec, testbit_even_succ by apply le_0_l. + rewrite <- IHn. + rewrite testbit_succ_r_div2 by apply le_0_l. + f_equal. simpl. rewrite Pos.iter_succ. + now destruct (Pos.iter n xO p). + apply succ_le_mono. now rewrite succ_pos_pred. +Qed. + +Lemma pred_div2_up p : Pos.pred_N (Pos.div2_up p) = div2 (Pos.pred_N p). +Proof. + destruct p as [p|p| ]; trivial. + simpl. apply Pos.pred_N_succ. + destruct p; simpl; trivial. +Qed. End N. diff --git a/theories/NArith/BinNatDef.v b/theories/NArith/BinNatDef.v index ec91dc5db..d459f8509 100644 --- a/theories/NArith/BinNatDef.v +++ b/theories/NArith/BinNatDef.v @@ -8,6 +8,7 @@ Require Export BinNums. Require Import BinPos. + Local Open Scope N_scope. (**********************************************************************) |