aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/NArith/Pminmax.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/Pminmax.v')
-rw-r--r--theories/NArith/Pminmax.v189
1 files changed, 45 insertions, 144 deletions
diff --git a/theories/NArith/Pminmax.v b/theories/NArith/Pminmax.v
index afae63f5a..3b3c58841 100644
--- a/theories/NArith/Pminmax.v
+++ b/theories/NArith/Pminmax.v
@@ -15,211 +15,112 @@ Local Open Scope positive_scope.
(** The functions [Pmax] and [Pmin] implement indeed
a maximum and a minimum *)
-Lemma Pmax_spec : forall x y,
- (x<y /\ Pmax x y = y) \/ (y<=x /\ Pmax x y = x).
+Lemma Pmax_l : forall x y, y<=x -> Pmax x y = x.
Proof.
- unfold Plt, Ple, Pmax. intros.
- generalize (Pcompare_eq_iff x y). rewrite (ZC4 y x).
- destruct ((x ?= y) Eq); simpl; auto; right; intuition; discriminate.
+ unfold Ple, Pmax. intros x y.
+ rewrite (ZC4 y x). generalize (Pcompare_eq_iff x y).
+ destruct ((x ?= y) Eq); intuition.
Qed.
-Lemma Pmin_spec : forall x y,
- (x<y /\ Pmin x y = x) \/ (y<=x /\ Pmin x y = y).
+Lemma Pmax_r : forall x y, x<=y -> Pmax x y = y.
Proof.
- unfold Plt, Ple, Pmin. intros.
- generalize (Pcompare_eq_iff x y). rewrite (ZC4 y x).
- destruct ((x ?= y) Eq); simpl; auto; right; intuition; discriminate.
+ unfold Ple, Pmax. intros x y. destruct ((x ?= y) Eq); intuition.
Qed.
-Module PositiveHasMinMax <: HasMinMax Positive_as_OT.
- Definition max := Pmax.
- Definition min := Pmin.
- Definition max_spec := Pmax_spec.
- Definition min_spec := Pmin_spec.
-End PositiveHasMinMax.
-
-(** We obtain hence all the generic properties of max and min. *)
-
-Module Import NatMinMaxProps :=
- MinMaxProperties Positive_as_OT PositiveHasMinMax.
-
-
-(** For some generic properties, we can have nicer statements here,
- since underlying equality is Leibniz. *)
-
-Lemma Pmax_case_strong : forall n m (P:positive -> Type),
- (m<=n -> P n) -> (n<=m -> P m) -> P (Pmax n m).
-Proof. intros; apply max_case_strong; auto. congruence. Defined.
-
-Lemma Pmax_case : forall n m (P:positive -> Type),
- P n -> P m -> P (Pmax n m).
-Proof. intros. apply Pmax_case_strong; auto. Defined.
-
-Lemma Pmax_monotone: forall f,
- (Proper (Ple ==> Ple) f) ->
- forall x y, Pmax (f x) (f y) = f (Pmax x y).
-Proof. intros; apply max_monotone; auto. congruence. Qed.
-
-Lemma Pmin_case_strong : forall n m (P:positive -> Type),
- (n<=m -> P n) -> (m<=n -> P m) -> P (Pmin n m).
-Proof. intros; apply min_case_strong; auto. congruence. Defined.
-
-Lemma Pmin_case : forall n m (P:positive -> Type),
- P n -> P m -> P (Pmin n m).
-Proof. intros. apply Pmin_case_strong; auto. Defined.
-
-Lemma Pmin_monotone: forall f,
- (Proper (Ple ==> Ple) f) ->
- forall x y, Pmin (f x) (f y) = f (Pmin x y).
-Proof. intros; apply min_monotone; auto. congruence. Qed.
-
-Lemma Pmax_min_antimonotone : forall f,
- Proper (Ple==>Pge) f ->
- forall x y, Pmax (f x) (f y) == f (Pmin x y).
+Lemma Pmin_l : forall x y, x<=y -> Pmin x y = x.
Proof.
- intros f H. apply max_min_antimonotone. congruence.
- intros z z' Hz; red. specialize (H _ _ Hz). clear Hz.
- unfold Ple, Pge in *. contradict H. rewrite ZC4, H; auto.
+ unfold Ple, Pmin. intros x y. destruct ((x ?= y) Eq); intuition.
Qed.
-Lemma Pmin_max_antimonotone : forall f,
- Proper (Ple==>Pge) f ->
- forall x y, Pmin (f x) (f y) == f (Pmax x y).
+Lemma Pmin_r : forall x y, y<=x -> Pmin x y = y.
Proof.
- intros f H. apply min_max_antimonotone. congruence.
- intros z z' Hz; red. specialize (H _ _ Hz). clear Hz.
- unfold Ple, Pge in *. contradict H. rewrite ZC4, H; auto.
+ unfold Ple, Pmin. intros x y.
+ rewrite (ZC4 y x). generalize (Pcompare_eq_iff x y).
+ destruct ((x ?= y) Eq); intuition.
Qed.
-(** For the other generic properties, we make aliases,
- since otherwise SearchAbout misses some of them
- (bad interaction with an Include).
- See GenericMinMax (or SearchAbout) for the statements. *)
-
-Definition Pmax_spec_le := max_spec_le.
-Definition Pmax_dec := max_dec.
-Definition Pmax_unicity := max_unicity.
-Definition Pmax_unicity_ext := max_unicity_ext.
-Definition Pmax_id := max_id.
-Notation Pmax_idempotent := Pmax_id (only parsing).
-Definition Pmax_assoc := max_assoc.
-Definition Pmax_comm := max_comm.
-Definition Pmax_l := max_l.
-Definition Pmax_r := max_r.
-Definition Ple_max_l := le_max_l.
-Definition Ple_max_r := le_max_r.
-Definition Pmax_le := max_le.
-Definition Pmax_le_iff := max_le_iff.
-Definition Pmax_lt_iff := max_lt_iff.
-Definition Pmax_lub_l := max_lub_l.
-Definition Pmax_lub_r := max_lub_r.
-Definition Pmax_lub := max_lub.
-Definition Pmax_lub_iff := max_lub_iff.
-Definition Pmax_lub_lt := max_lub_lt.
-Definition Pmax_lub_lt_iff := max_lub_lt_iff.
-Definition Pmax_le_compat_l := max_le_compat_l.
-Definition Pmax_le_compat_r := max_le_compat_r.
-Definition Pmax_le_compat := max_le_compat.
-
-Definition Pmin_spec_le := min_spec_le.
-Definition Pmin_dec := min_dec.
-Definition Pmin_unicity := min_unicity.
-Definition Pmin_unicity_ext := min_unicity_ext.
-Definition Pmin_id := min_id.
-Notation Pmin_idempotent := Pmin_id (only parsing).
-Definition Pmin_assoc := min_assoc.
-Definition Pmin_comm := min_comm.
-Definition Pmin_l := min_l.
-Definition Pmin_r := min_r.
-Definition Ple_min_l := le_min_l.
-Definition Ple_min_r := le_min_r.
-Definition Pmin_le := min_le.
-Definition Pmin_le_iff := min_le_iff.
-Definition Pmin_lt_iff := min_lt_iff.
-Definition Pmin_glb_l := min_glb_l.
-Definition Pmin_glb_r := min_glb_r.
-Definition Pmin_glb := min_glb.
-Definition Pmin_glb_iff := min_glb_iff.
-Definition Pmin_glb_lt := min_glb_lt.
-Definition Pmin_glb_lt_iff := min_glb_lt_iff.
-Definition Pmin_le_compat_l := min_le_compat_l.
-Definition Pmin_le_compat_r := min_le_compat_r.
-Definition Pmin_le_compat := min_le_compat.
-
-Definition Pmin_max_absorption := min_max_absorption.
-Definition Pmax_min_absorption := max_min_absorption.
-Definition Pmax_min_distr := max_min_distr.
-Definition Pmin_max_distr := min_max_distr.
-Definition Pmax_min_modular := max_min_modular.
-Definition Pmin_max_modular := min_max_modular.
-Definition Pmax_min_disassoc := max_min_disassoc.
+Module PositiveHasMinMax <: HasMinMax Positive_as_OT.
+ Definition max := Pmax.
+ Definition min := Pmin.
+ Definition max_l := Pmax_l.
+ Definition max_r := Pmax_r.
+ Definition min_l := Pmin_l.
+ Definition min_r := Pmin_r.
+End PositiveHasMinMax.
+
+Module P.
+(** We obtain hence all the generic properties of max and min. *)
+
+Include UsualMinMaxProperties Positive_as_OT PositiveHasMinMax.
(** * Properties specific to the [positive] domain *)
(** Simplifications *)
-Lemma Pmax_1_l : forall n, Pmax 1 n = n.
+Lemma max_1_l : forall n, Pmax 1 n = n.
Proof.
intros. unfold Pmax. rewrite ZC4. generalize (Pcompare_1 n).
destruct (n ?= 1); intuition.
Qed.
-Lemma Pmax_1_r : forall n, Pmax n 1 = n.
-Proof. intros. rewrite max_comm. apply Pmax_1_l. Qed.
+Lemma max_1_r : forall n, Pmax n 1 = n.
+Proof. intros. rewrite P.max_comm. apply max_1_l. Qed.
-Lemma Pmin_1_l : forall n, Pmin 1 n = 1.
+Lemma min_1_l : forall n, Pmin 1 n = 1.
Proof.
intros. unfold Pmin. rewrite ZC4. generalize (Pcompare_1 n).
destruct (n ?= 1); intuition.
Qed.
-Lemma Pmin_1_r : forall n, Pmin n 1 = 1.
-Proof. intros. rewrite min_comm. apply Pmin_1_l. Qed.
+Lemma min_1_r : forall n, Pmin n 1 = 1.
+Proof. intros. rewrite P.min_comm. apply min_1_l. Qed.
(** Compatibilities (consequences of monotonicity) *)
-Lemma Psucc_max_distr :
+Lemma succ_max_distr :
forall n m, Psucc (Pmax n m) = Pmax (Psucc n) (Psucc m).
Proof.
- intros. symmetry. apply Pmax_monotone.
+ intros. symmetry. apply max_monotone.
intros x x'. unfold Ple.
rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism.
simpl; auto.
Qed.
-Lemma Psucc_min_distr : forall n m, Psucc (Pmin n m) = Pmin (Psucc n) (Psucc m).
+Lemma succ_min_distr : forall n m, Psucc (Pmin n m) = Pmin (Psucc n) (Psucc m).
Proof.
- intros. symmetry. apply Pmin_monotone.
+ intros. symmetry. apply min_monotone.
intros x x'. unfold Ple.
rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism.
simpl; auto.
Qed.
-Lemma Pplus_max_distr_l : forall n m p, Pmax (p + n) (p + m) = p + Pmax n m.
+Lemma plus_max_distr_l : forall n m p, Pmax (p + n) (p + m) = p + Pmax n m.
Proof.
- intros. apply Pmax_monotone.
+ intros. apply max_monotone.
intros x x'. unfold Ple.
rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism.
rewrite <- 2 Compare_dec.nat_compare_le. auto with arith.
Qed.
-Lemma Pplus_max_distr_r : forall n m p, Pmax (n + p) (m + p) = Pmax n m + p.
+Lemma plus_max_distr_r : forall n m p, Pmax (n + p) (m + p) = Pmax n m + p.
Proof.
intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p).
- apply Pplus_max_distr_l.
+ apply plus_max_distr_l.
Qed.
-Lemma Pplus_min_distr_l : forall n m p, Pmin (p + n) (p + m) = p + Pmin n m.
+Lemma plus_min_distr_l : forall n m p, Pmin (p + n) (p + m) = p + Pmin n m.
Proof.
- intros. apply Pmin_monotone.
+ intros. apply min_monotone.
intros x x'. unfold Ple.
rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism.
rewrite <- 2 Compare_dec.nat_compare_le. auto with arith.
Qed.
-Lemma Pplus_min_distr_r : forall n m p, Pmin (n + p) (m + p) = Pmin n m + p.
+Lemma plus_min_distr_r : forall n m p, Pmin (n + p) (m + p) = Pmin n m + p.
Proof.
intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p).
- apply Pplus_min_distr_l.
+ apply plus_min_distr_l.
Qed.
+
+End P. \ No newline at end of file