aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic')
-rw-r--r--theories/Logic/ClassicalDescription.v2
-rw-r--r--theories/Logic/ClassicalFacts.v4
-rw-r--r--theories/Logic/ConstructiveEpsilon.v4
-rw-r--r--theories/Logic/Diaconescu.v2
4 files changed, 5 insertions, 7 deletions
diff --git a/theories/Logic/ClassicalDescription.v b/theories/Logic/ClassicalDescription.v
index aa65eb44c..855588602 100644
--- a/theories/Logic/ClassicalDescription.v
+++ b/theories/Logic/ClassicalDescription.v
@@ -21,7 +21,7 @@ Set Implicit Arguments.
Require Export Classical.
Require Import ChoiceFacts.
-Notation Local "'inhabited' A" := A (at level 200, only parsing).
+Notation Local inhabited A := A.
Axiom constructive_definite_description :
forall (A : Type) (P : A->Prop), (exists! x : A, P x) -> { x : A | P x }.
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index f3f177a73..6673fa8c9 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -119,7 +119,7 @@ Qed.
*)
-Definition inhabited (A:Prop) := A.
+Notation Local inhabited A := A.
Lemma prop_ext_A_eq_A_imp_A :
prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
@@ -514,8 +514,6 @@ Qed.
344 of Lecture Notes in Mathematics, Springer-Verlag, 1973.
*)
-Notation Local "'inhabited' A" := A (at level 10, only parsing).
-
Definition IndependenceOfGeneralPremises :=
forall (A:Type) (P:A -> Prop) (Q:Prop),
inhabited A -> (Q -> exists x, P x) -> exists x, Q -> P x.
diff --git a/theories/Logic/ConstructiveEpsilon.v b/theories/Logic/ConstructiveEpsilon.v
index fe571779c..83d5e002a 100644
--- a/theories/Logic/ConstructiveEpsilon.v
+++ b/theories/Logic/ConstructiveEpsilon.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id:$ i*)
+(*i $Id$ i*)
(** This module proves the constructive description schema, which
infers the sigma-existence (i.e., [Set]-existence) of a witness to a
@@ -53,7 +53,7 @@ of our searching algorithm. *)
Let R (x y : nat) : Prop := x = S y /\ ~ P y.
-Notation Local "'acc' x" := (Acc R x) (at level 10).
+Notation Local acc x := (Acc R x).
Lemma P_implies_acc : forall x : nat, P x -> acc x.
Proof.
diff --git a/theories/Logic/Diaconescu.v b/theories/Logic/Diaconescu.v
index a954cbef7..b96ae30e4 100644
--- a/theories/Logic/Diaconescu.v
+++ b/theories/Logic/Diaconescu.v
@@ -267,7 +267,7 @@ End ProofIrrel_RelChoice_imp_EqEM.
(** Proof sketch from Bell [Bell93] (with thanks to P. Castéran) *)
-Notation Local "'inhabited' A" := A (at level 10, only parsing).
+Notation Local inhabited A := A.
Section ExtensionalEpsilon_imp_EM.