aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Logic/ConstructiveEpsilon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/ConstructiveEpsilon.v')
-rw-r--r--theories/Logic/ConstructiveEpsilon.v2
1 files changed, 2 insertions, 0 deletions
diff --git a/theories/Logic/ConstructiveEpsilon.v b/theories/Logic/ConstructiveEpsilon.v
index 322f2d9be..fe571779c 100644
--- a/theories/Logic/ConstructiveEpsilon.v
+++ b/theories/Logic/ConstructiveEpsilon.v
@@ -31,6 +31,8 @@ To use [Fix_F], we define a relation R and prove that if [exists n,
P n] then 0 is accessible with respect to R. Then, by induction on the
definition of [Acc R 0], we show [{n : nat | P n}]. *)
+(** Based on ideas from Benjamin Werner and Jean-François Monin *)
+
(** Contributed by Yevgeniy Makarov *)
Require Import Arith.