aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Lists
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists')
-rw-r--r--theories/Lists/PolyList.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Lists/PolyList.v b/theories/Lists/PolyList.v
index c1d07eaa6..7eeeb73f0 100644
--- a/theories/Lists/PolyList.v
+++ b/theories/Lists/PolyList.v
@@ -84,9 +84,9 @@ Qed.
Lemma app_eq_nil: (x,y:list) (x^y)=nil -> x=nil /\ y=nil.
Proof.
- Destruct x;Destruct y;Simpl;Auto.
+ NewDestruct x;NewDestruct y;Simpl;Auto.
Intros H;Discriminate H.
- Intros a0 l0 H;Discriminate H.
+ Intros;Discriminate H.
Qed.
Lemma app_cons_not_nil: (x,y:list)(a:A)~nil=(x^(cons a y)).
@@ -101,7 +101,7 @@ Lemma app_eq_unit:(x,y:list)(a:A)
(x^y)=(cons a nil)-> (x=nil)/\ y=(cons a nil) \/ x=(cons a nil)/\ y=nil.
Proof.
- Destruct x;Destruct y;Simpl.
+ NewDestruct x;NewDestruct y;Simpl.
Intros a H;Discriminate H.
Left;Split;Auto.
Right;Split;Auto.
@@ -442,7 +442,7 @@ i*)
Lemma list_eq_dec : ((x,y:A){x=y}+{~x=y})->(x,y:list){x=y}+{~x=y}.
Proof.
- Induction x; Destruct y; Intros; Auto.
+ Induction x; NewDestruct y; Intros; Auto.
Case (H a a0); Intro e.
Case (H0 l0); Intro e'.
Left; Rewrite e; Rewrite e'; Trivial.