diff options
Diffstat (limited to 'theories/Lists')
-rw-r--r-- | theories/Lists/PolyList.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/Lists/PolyList.v b/theories/Lists/PolyList.v index c1d07eaa6..7eeeb73f0 100644 --- a/theories/Lists/PolyList.v +++ b/theories/Lists/PolyList.v @@ -84,9 +84,9 @@ Qed. Lemma app_eq_nil: (x,y:list) (x^y)=nil -> x=nil /\ y=nil. Proof. - Destruct x;Destruct y;Simpl;Auto. + NewDestruct x;NewDestruct y;Simpl;Auto. Intros H;Discriminate H. - Intros a0 l0 H;Discriminate H. + Intros;Discriminate H. Qed. Lemma app_cons_not_nil: (x,y:list)(a:A)~nil=(x^(cons a y)). @@ -101,7 +101,7 @@ Lemma app_eq_unit:(x,y:list)(a:A) (x^y)=(cons a nil)-> (x=nil)/\ y=(cons a nil) \/ x=(cons a nil)/\ y=nil. Proof. - Destruct x;Destruct y;Simpl. + NewDestruct x;NewDestruct y;Simpl. Intros a H;Discriminate H. Left;Split;Auto. Right;Split;Auto. @@ -442,7 +442,7 @@ i*) Lemma list_eq_dec : ((x,y:A){x=y}+{~x=y})->(x,y:list){x=y}+{~x=y}. Proof. - Induction x; Destruct y; Intros; Auto. + Induction x; NewDestruct y; Intros; Auto. Case (H a a0); Intro e. Case (H0 l0); Intro e'. Left; Rewrite e; Rewrite e'; Trivial. |