diff options
Diffstat (limited to 'theories/Lists/List.v')
-rw-r--r-- | theories/Lists/List.v | 76 |
1 files changed, 75 insertions, 1 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v index 957f1066d..b66699220 100644 --- a/theories/Lists/List.v +++ b/theories/Lists/List.v @@ -7,7 +7,7 @@ (************************************************************************) Require Setoid. -Require Import PeanoNat Le Gt Minus Bool. +Require Import PeanoNat Le Gt Minus Bool Lt. Set Implicit Arguments. (* Set Universe Polymorphism. *) @@ -1634,6 +1634,80 @@ Section Cutting. end end. + Lemma firstn_nil n: firstn n [] = []. + Proof. induction n; now simpl. Qed. + + Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l). + Proof. now simpl. Qed. + + Lemma firstn_all l: firstn (length l) l = l. + Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed. + + Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l. + Proof. induction n as [|k iHk]. + - intro. inversion 1 as [H1|?]. + rewrite (length_zero_iff_nil l) in H1. subst. now simpl. + - destruct l as [|x xs]; simpl. + * now reflexivity. + * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H. + Qed. + + Lemma firstn_O l: firstn 0 l = []. + Proof. now simpl. Qed. + + Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n. + Proof. + induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl]. + - auto with arith. + - apply Peano.le_n_S, iHk. + Qed. + + Lemma firstn_length_le: forall l:list A, forall n:nat, + n <= length l -> length (firstn n l) = n. + Proof. induction l as [|x xs Hrec]. + - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl. + - destruct n. + * now simpl. + * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H). + Qed. + + Lemma firstn_app n: + forall l1 l2, + firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2). + Proof. induction n as [|k iHk]; intros l1 l2. + - now simpl. + - destruct l1 as [|x xs]. + * unfold firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O. + * rewrite <- app_comm_cons. simpl. f_equal. apply iHk. + Qed. + + Lemma firstn_app_2 n: + forall l1 l2, + firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2. + Proof. induction n as [| k iHk];intros l1 l2. + - unfold firstn at 2. rewrite <- plus_n_O, app_nil_r. + rewrite firstn_app. rewrite <- minus_diag_reverse. + unfold firstn at 2. rewrite app_nil_r. apply firstn_all. + - destruct l2 as [|x xs]. + * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith. + * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k). + auto with arith. + rewrite H0, firstn_all2; [reflexivity | auto with arith]. + Qed. + + Lemma firstn_firstn: + forall l:list A, + forall i j : nat, + firstn i (firstn j l) = firstn (min i j) l. + Proof. induction l as [|x xs Hl]. + - intros. simpl. now rewrite ?firstn_nil. + - destruct i. + * intro. now simpl. + * destruct j. + + now simpl. + + simpl. f_equal. apply Hl. + Qed. + Fixpoint skipn (n:nat)(l:list A) : list A := match n with | 0 => l |