aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Ints/Z
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Ints/Z')
-rw-r--r--theories/Ints/Z/IntsZmisc.v185
-rw-r--r--theories/Ints/Z/Pmod.v565
-rw-r--r--theories/Ints/Z/Ppow.v39
-rw-r--r--theories/Ints/Z/ZAux.v1367
-rw-r--r--theories/Ints/Z/ZDivModAux.v479
-rw-r--r--theories/Ints/Z/ZPowerAux.v203
-rw-r--r--theories/Ints/Z/ZSum.v321
7 files changed, 148 insertions, 3011 deletions
diff --git a/theories/Ints/Z/IntsZmisc.v b/theories/Ints/Z/IntsZmisc.v
deleted file mode 100644
index e4dee2d4f..000000000
--- a/theories/Ints/Z/IntsZmisc.v
+++ /dev/null
@@ -1,185 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Export ZArith.
-Open Local Scope Z_scope.
-
-Coercion Zpos : positive >-> Z.
-Coercion Z_of_N : N >-> Z.
-
-Lemma Zpos_plus : forall p q, Zpos (p + q) = p + q.
-Proof. intros;trivial. Qed.
-
-Lemma Zpos_mult : forall p q, Zpos (p * q) = p * q.
-Proof. intros;trivial. Qed.
-
-Lemma Zpos_xI_add : forall p, Zpos (xI p) = Zpos p + Zpos p + Zpos 1.
-Proof. intros p;rewrite Zpos_xI;ring. Qed.
-
-Lemma Zpos_xO_add : forall p, Zpos (xO p) = Zpos p + Zpos p.
-Proof. intros p;rewrite Zpos_xO;ring. Qed.
-
-Lemma Psucc_Zplus : forall p, Zpos (Psucc p) = p + 1.
-Proof. intros p;rewrite Zpos_succ_morphism;unfold Zsucc;trivial. Qed.
-
-Hint Rewrite Zpos_xI_add Zpos_xO_add Pplus_carry_spec
- Psucc_Zplus Zpos_plus : zmisc.
-
-Lemma Zlt_0_pos : forall p, 0 < Zpos p.
-Proof. unfold Zlt;trivial. Qed.
-
-
-Lemma Pminus_mask_carry_spec : forall p q,
- Pminus_mask_carry p q = Pminus_mask p (Psucc q).
-Proof.
- intros p q;generalize q p;clear q p.
- induction q;destruct p;simpl;try rewrite IHq;trivial.
- destruct p;trivial. destruct p;trivial.
-Qed.
-
-Hint Rewrite Pminus_mask_carry_spec : zmisc.
-
-Ltac zsimpl := autorewrite with zmisc.
-Ltac CaseEq t := generalize (refl_equal t);pattern t at -1;case t.
-Ltac generalizeclear H := generalize H;clear H.
-
-Lemma Pminus_mask_spec :
- forall p q,
- match Pminus_mask p q with
- | IsNul => Zpos p = Zpos q
- | IsPos k => Zpos p = q + k
- | IsNeq => p < q
- end.
-Proof with zsimpl;auto with zarith.
- induction p;destruct q;simpl;zsimpl;
- match goal with
- | [|- context [(Pminus_mask ?p1 ?q1)]] =>
- assert (H1 := IHp q1);destruct (Pminus_mask p1 q1)
- | _ => idtac
- end;simpl ...
- inversion H1 ... inversion H1 ...
- rewrite Psucc_Zplus in H1 ...
- clear IHp;induction p;simpl ...
- rewrite IHp;destruct (Pdouble_minus_one p) ...
- assert (H:= Zlt_0_pos q) ... assert (H:= Zlt_0_pos q) ...
-Qed.
-
-Definition PminusN x y :=
- match Pminus_mask x y with
- | IsPos k => Npos k
- | _ => N0
- end.
-
-Lemma PminusN_le : forall x y:positive, x <= y -> Z_of_N (PminusN y x) = y - x.
-Proof.
- intros x y Hle;unfold PminusN.
- assert (H := Pminus_mask_spec y x);destruct (Pminus_mask y x).
- rewrite H;unfold Z_of_N;auto with zarith.
- rewrite H;unfold Z_of_N;auto with zarith.
- elimtype False;omega.
-Qed.
-
-Lemma Ppred_Zminus : forall p, 1< Zpos p -> (p-1)%Z = Ppred p.
-Proof. destruct p;simpl;trivial. intros;elimtype False;omega. Qed.
-
-
-Open Local Scope positive_scope.
-
-Delimit Scope P_scope with P.
-Open Local Scope P_scope.
-
-Definition is_lt (n m : positive) :=
- match (n ?= m) Eq with
- | Lt => true
- | _ => false
- end.
-Infix "?<" := is_lt (at level 70, no associativity) : P_scope.
-
-Lemma is_lt_spec : forall n m, if n ?< m then (n < m)%Z else (m <= n)%Z.
-Proof.
- intros n m; unfold is_lt, Zlt, Zle, Zcompare.
- rewrite (ZC4 m n);destruct ((n ?= m) Eq);trivial;try (intro;discriminate).
-Qed.
-
-Definition is_eq a b :=
- match (a ?= b) Eq with
- | Eq => true
- | _ => false
- end.
-Infix "?=" := is_eq (at level 70, no associativity) : P_scope.
-
-Lemma is_eq_refl : forall n, n ?= n = true.
-Proof. intros n;unfold is_eq;rewrite Pcompare_refl;trivial. Qed.
-
-Lemma is_eq_eq : forall n m, n ?= m = true -> n = m.
-Proof.
- unfold is_eq;intros n m H; apply Pcompare_Eq_eq;
- destruct ((n ?= m)%positive Eq);trivial;try discriminate.
-Qed.
-
-Lemma is_eq_spec_pos : forall n m, if n ?= m then n = m else m <> n.
-Proof.
- intros n m; CaseEq (n ?= m);intro H.
- rewrite (is_eq_eq _ _ H);trivial.
- intro H1;rewrite H1 in H;rewrite is_eq_refl in H;discriminate H.
-Qed.
-
-Lemma is_eq_spec : forall n m, if n ?= m then Zpos n = m else Zpos m <> n.
-Proof.
- intros n m; CaseEq (n ?= m);intro H.
- rewrite (is_eq_eq _ _ H);trivial.
- intro H1;inversion H1.
- rewrite H2 in H;rewrite is_eq_refl in H;discriminate H.
-Qed.
-
-Definition is_Eq a b :=
- match a, b with
- | N0, N0 => true
- | Npos a', Npos b' => a' ?= b'
- | _, _ => false
- end.
-
-Lemma is_Eq_spec :
- forall n m, if is_Eq n m then Z_of_N n = m else Z_of_N m <> n.
-Proof.
- destruct n;destruct m;simpl;trivial;try (intro;discriminate).
- apply is_eq_spec.
-Qed.
-
-(* [times x y] return [x * y], a litle bit more efficiant *)
-Fixpoint times (x y : positive) {struct y} : positive :=
- match x, y with
- | xH, _ => y
- | _, xH => x
- | xO x', xO y' => xO (xO (times x' y'))
- | xO x', xI y' => xO (x' + xO (times x' y'))
- | xI x', xO y' => xO (y' + xO (times x' y'))
- | xI x', xI y' => xI (x' + y' + xO (times x' y'))
- end.
-
-Infix "*" := times : P_scope.
-
-Lemma times_Zmult : forall p q, Zpos (p * q)%P = (p * q)%Z.
-Proof.
- intros p q;generalize q p;clear p q.
- induction q;destruct p; unfold times; try fold (times p q);
- autorewrite with zmisc; try rewrite IHq; ring.
-Qed.
-
-Fixpoint square (x:positive) : positive :=
- match x with
- | xH => xH
- | xO x => xO (xO (square x))
- | xI x => xI (xO (square x + x))
- end.
-
-Lemma square_Zmult : forall x, Zpos (square x) = (x * x) %Z.
-Proof.
- induction x as [x IHx|x IHx |];unfold square;try (fold (square x));
- autorewrite with zmisc; try rewrite IHx; ring.
-Qed.
diff --git a/theories/Ints/Z/Pmod.v b/theories/Ints/Z/Pmod.v
deleted file mode 100644
index 1ea08b4fa..000000000
--- a/theories/Ints/Z/Pmod.v
+++ /dev/null
@@ -1,565 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-Require Import IntsZmisc.
-Open Local Scope P_scope.
-
-(* [div_eucl a b] return [(q,r)] such that a = q*b + r *)
-Fixpoint div_eucl (a b : positive) {struct a} : N * N :=
- match a with
- | xH => if 1 ?< b then (0%N, 1%N) else (1%N, 0%N)
- | xO a' =>
- let (q, r) := div_eucl a' b in
- match q, r with
- | N0, N0 => (0%N, 0%N) (* n'arrive jamais *)
- | N0, Npos r =>
- if (xO r) ?< b then (0%N, Npos (xO r))
- else (1%N,PminusN (xO r) b)
- | Npos q, N0 => (Npos (xO q), 0%N)
- | Npos q, Npos r =>
- if (xO r) ?< b then (Npos (xO q), Npos (xO r))
- else (Npos (xI q),PminusN (xO r) b)
- end
- | xI a' =>
- let (q, r) := div_eucl a' b in
- match q, r with
- | N0, N0 => (0%N, 0%N) (* Impossible *)
- | N0, Npos r =>
- if (xI r) ?< b then (0%N, Npos (xI r))
- else (1%N,PminusN (xI r) b)
- | Npos q, N0 => if 1 ?< b then (Npos (xO q), 1%N) else (Npos (xI q), 0%N)
- | Npos q, Npos r =>
- if (xI r) ?< b then (Npos (xO q), Npos (xI r))
- else (Npos (xI q),PminusN (xI r) b)
- end
- end.
-Infix "/" := div_eucl : P_scope.
-
-Open Scope Z_scope.
-Opaque Zmult.
-Lemma div_eucl_spec : forall a b,
- Zpos a = fst (a/b)%P * b + snd (a/b)%P
- /\ snd (a/b)%P < b.
-Proof with zsimpl;try apply Zlt_0_pos;try ((ring;fail) || omega).
- intros a b;generalize a;clear a;induction a;simpl;zsimpl;
- try (case IHa;clear IHa;repeat rewrite Zmult_0_l;zsimpl;intros H1 H2;
- try rewrite H1; destruct (a/b)%P as [q r];
- destruct q as [|q];destruct r as [|r];simpl in *;
- generalize H1 H2;clear H1 H2);repeat rewrite Zmult_0_l;
- repeat rewrite Zplus_0_r;
- zsimpl;simpl;intros;
- match goal with
- | [H : Zpos _ = 0 |- _] => discriminate H
- | [|- context [ ?xx ?< b ]] =>
- assert (H3 := is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end;simpl;try assert(H4 := Zlt_0_pos r);split;repeat rewrite Zplus_0_r;
- try (generalize H3;zsimpl;intros);
- try (rewrite PminusN_le;trivial) ...
- assert (Zpos b = 1) ... rewrite H ...
- assert (H4 := Zlt_0_pos b); assert (Zpos b = 1) ...
-Qed.
-Transparent Zmult.
-
-(******** Definition du modulo ************)
-
-(* [mod a b] return [a] modulo [b] *)
-Fixpoint Pmod (a b : positive) {struct a} : N :=
- match a with
- | xH => if 1 ?< b then 1%N else 0%N
- | xO a' =>
- let r := Pmod a' b in
- match r with
- | N0 => 0%N
- | Npos r' =>
- if (xO r') ?< b then Npos (xO r')
- else PminusN (xO r') b
- end
- | xI a' =>
- let r := Pmod a' b in
- match r with
- | N0 => if 1 ?< b then 1%N else 0%N
- | Npos r' =>
- if (xI r') ?< b then Npos (xI r')
- else PminusN (xI r') b
- end
- end.
-
-Infix "mod" := Pmod (at level 40, no associativity) : P_scope.
-Open Local Scope P_scope.
-
-Lemma Pmod_div_eucl : forall a b, a mod b = snd (a/b).
-Proof with auto.
- intros a b;generalize a;clear a;induction a;simpl;
- try (rewrite IHa;
- assert (H1 := div_eucl_spec a b); destruct (a/b) as [q r];
- destruct q as [|q];destruct r as [|r];simpl in *;
- match goal with
- | [|- context [ ?xx ?< b ]] =>
- assert (H2 := is_lt_spec xx b);destruct (xx ?< b)
- | _ => idtac
- end;simpl) ...
- destruct H1 as [H3 H4];discriminate H3.
- destruct (1 ?< b);simpl ...
-Qed.
-
-Lemma mod1: forall a, a mod 1 = 0%N.
-Proof. induction a;simpl;try rewrite IHa;trivial. Qed.
-
-Lemma mod_a_a_0 : forall a, a mod a = N0.
-Proof.
- intros a;generalize (div_eucl_spec a a);rewrite <- Pmod_div_eucl.
- destruct (fst (a / a));unfold Z_of_N at 1.
- rewrite Zmult_0_l;intros (H1,H2);elimtype False;omega.
- assert (a<=p*a).
- pattern (Zpos a) at 1;rewrite <- (Zmult_1_l a).
- assert (H1:= Zlt_0_pos p);assert (H2:= Zle_0_pos a);
- apply Zmult_le_compat;trivial;try omega.
- destruct (a mod a)%P;auto with zarith.
- unfold Z_of_N;assert (H1:= Zlt_0_pos p0);intros (H2,H3);elimtype False;omega.
-Qed.
-
-Lemma mod_le_2r : forall (a b r: positive) (q:N),
- Zpos a = b*q + r -> b <= a -> r < b -> 2*r <= a.
-Proof.
- intros a b r q H0 H1 H2.
- assert (H3:=Zlt_0_pos a). assert (H4:=Zlt_0_pos b). assert (H5:=Zlt_0_pos r).
- destruct q as [|q]. rewrite Zmult_0_r in H0. elimtype False;omega.
- assert (H6:=Zlt_0_pos q). unfold Z_of_N in H0.
- assert (Zpos r = a - b*q). omega.
- simpl;zsimpl. pattern r at 2;rewrite H.
- assert (b <= b * q).
- pattern (Zpos b) at 1;rewrite <- (Zmult_1_r b).
- apply Zmult_le_compat;try omega.
- apply Zle_trans with (a - b * q + b). omega.
- apply Zle_trans with (a - b + b);omega.
-Qed.
-
-Lemma mod_lt : forall a b r, a mod b = Npos r -> r < b.
-Proof.
- intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;
- rewrite H;simpl;intros (H1,H2);omega.
-Qed.
-
-Lemma mod_le : forall a b r, a mod b = Npos r -> r <= b.
-Proof. intros a b r H;assert (H1:= mod_lt _ _ _ H);omega. Qed.
-
-Lemma mod_le_a : forall a b r, a mod b = r -> r <= a.
-Proof.
- intros a b r H;generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;
- rewrite H;simpl;intros (H1,H2).
- assert (0 <= fst (a / b) * b).
- destruct (fst (a / b));simpl;auto with zarith.
- auto with zarith.
-Qed.
-
-Lemma lt_mod : forall a b, Zpos a < Zpos b -> (a mod b)%P = Npos a.
-Proof.
- intros a b H; rewrite Pmod_div_eucl. case (div_eucl_spec a b).
- assert (0 <= snd(a/b)). destruct (snd(a/b));simpl;auto with zarith.
- destruct (fst (a/b)).
- unfold Z_of_N at 1;rewrite Zmult_0_l;rewrite Zplus_0_l.
- destruct (snd (a/b));simpl; intros H1 H2;inversion H1;trivial.
- unfold Z_of_N at 1;assert (b <= p*b).
- pattern (Zpos b) at 1; rewrite <- (Zmult_1_l (Zpos b)).
- assert (H1 := Zlt_0_pos p);apply Zmult_le_compat;try omega.
- apply Zle_0_pos.
- intros;elimtype False;omega.
-Qed.
-
-Fixpoint gcd_log2 (a b c:positive) {struct c}: option positive :=
- match a mod b with
- | N0 => Some b
- | Npos r =>
- match b mod r, c with
- | N0, _ => Some r
- | Npos r', xH => None
- | Npos r', xO c' => gcd_log2 r r' c'
- | Npos r', xI c' => gcd_log2 r r' c'
- end
- end.
-
-Fixpoint egcd_log2 (a b c:positive) {struct c}:
- option (Z * Z * positive) :=
- match a/b with
- | (_, N0) => Some (0, 1, b)
- | (q, Npos r) =>
- match b/r, c with
- | (_, N0), _ => Some (1, -q, r)
- | (q', Npos r'), xH => None
- | (q', Npos r'), xO c' =>
- match egcd_log2 r r' c' with
- None => None
- | Some (u', v', w') =>
- let u := u' - v' * q' in
- Some (u, v' - q * u, w')
- end
- | (q', Npos r'), xI c' =>
- match egcd_log2 r r' c' with
- None => None
- | Some (u', v', w') =>
- let u := u' - v' * q' in
- Some (u, v' - q * u, w')
- end
- end
- end.
-
-Lemma egcd_gcd_log2: forall c a b,
- match egcd_log2 a b c, gcd_log2 a b c with
- None, None => True
- | Some (u,v,r), Some r' => r = r'
- | _, _ => False
- end.
-induction c; simpl; auto; try
- (intros a b; generalize (Pmod_div_eucl a b); case (a/b); simpl;
- intros q r1 H; subst; case (a mod b); auto;
- intros r; generalize (Pmod_div_eucl b r); case (b/r); simpl;
- intros q' r1 H; subst; case (b mod r); auto;
- intros r'; generalize (IHc r r'); case egcd_log2; auto;
- intros ((p1,p2),p3); case gcd_log2; auto).
-Qed.
-
-Ltac rw l :=
- match l with
- | (?r, ?r1) =>
- match type of r with
- True => rewrite <- r1
- | _ => rw r; rw r1
- end
- | ?r => rewrite r
- end.
-
-Lemma egcd_log2_ok: forall c a b,
- match egcd_log2 a b c with
- None => True
- | Some (u,v,r) => u * a + v * b = r
- end.
-induction c; simpl; auto;
- intros a b; generalize (div_eucl_spec a b); case (a/b);
- simpl fst; simpl snd; intros q r1; case r1; try (intros; ring);
- simpl; intros r (Hr1, Hr2); clear r1;
- generalize (div_eucl_spec b r); case (b/r);
- simpl fst; simpl snd; intros q' r1; case r1;
- try (intros; rewrite Hr1; ring);
- simpl; intros r' (Hr'1, Hr'2); clear r1; auto;
- generalize (IHc r r'); case egcd_log2; auto;
- intros ((u',v'),w'); case gcd_log2; auto; intros;
- rw ((I, H), Hr1, Hr'1); ring.
-Qed.
-
-
-Fixpoint log2 (a:positive) : positive :=
- match a with
- | xH => xH
- | xO a => Psucc (log2 a)
- | xI a => Psucc (log2 a)
- end.
-
-Lemma gcd_log2_1: forall a c, gcd_log2 a xH c = Some xH.
-Proof. destruct c;simpl;try rewrite mod1;trivial. Qed.
-
-Lemma log2_Zle :forall a b, Zpos a <= Zpos b -> log2 a <= log2 b.
-Proof with zsimpl;try omega.
- induction a;destruct b;zsimpl;intros;simpl ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (H1 := Zlt_0_pos a);elimtype False;omega.
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (log2 a <= log2 b) ... apply IHa ...
- assert (H1 := Zlt_0_pos a);elimtype False;omega.
- assert (H1 := Zlt_0_pos (log2 b)) ...
- assert (H1 := Zlt_0_pos (log2 b)) ...
-Qed.
-
-Lemma log2_1_inv : forall a, Zpos (log2 a) = 1 -> a = xH.
-Proof.
- destruct a;simpl;zsimpl;intros;trivial.
- assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega.
- assert (H1:= Zlt_0_pos (log2 a));elimtype False;omega.
-Qed.
-
-Lemma mod_log2 :
- forall a b r:positive, a mod b = Npos r -> b <= a -> log2 r + 1 <= log2 a.
-Proof.
- intros; cut (log2 (xO r) <= log2 a). simpl;zsimpl;trivial.
- apply log2_Zle.
- replace (Zpos (xO r)) with (2 * r)%Z;trivial.
- generalize (div_eucl_spec a b);rewrite <- Pmod_div_eucl;rewrite H.
- rewrite Zmult_comm;intros [H1 H2];apply mod_le_2r with b (fst (a/b));trivial.
-Qed.
-
-Lemma gcd_log2_None_aux :
- forall c a b, Zpos b <= Zpos a -> log2 b <= log2 c ->
- gcd_log2 a b c <> None.
-Proof.
- induction c;simpl;intros;
- (CaseEq (a mod b);[intros Heq|intros r Heq];try (intro;discriminate));
- (CaseEq (b mod r);[intros Heq'|intros r' Heq'];try (intro;discriminate)).
- apply IHc. apply mod_le with b;trivial.
- generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega.
- apply IHc. apply mod_le with b;trivial.
- generalize H0 (mod_log2 _ _ _ Heq' (mod_le _ _ _ Heq));zsimpl;intros;omega.
- assert (Zpos (log2 b) = 1).
- assert (H1 := Zlt_0_pos (log2 b));omega.
- rewrite (log2_1_inv _ H1) in Heq;rewrite mod1 in Heq;discriminate Heq.
-Qed.
-
-Lemma gcd_log2_None : forall a b, Zpos b <= Zpos a -> gcd_log2 a b b <> None.
-Proof. intros;apply gcd_log2_None_aux;auto with zarith. Qed.
-
-Lemma gcd_log2_Zle :
- forall c1 c2 a b, log2 c1 <= log2 c2 ->
- gcd_log2 a b c1 <> None -> gcd_log2 a b c2 = gcd_log2 a b c1.
-Proof with zsimpl;trivial;try omega.
- induction c1;destruct c2;simpl;intros;
- (destruct (a mod b) as [|r];[idtac | destruct (b mod r)]) ...
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- elim H;destruct (log2 c1);trivial.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- apply IHc1;trivial. generalize H;zsimpl;intros;omega.
- elim H;destruct (log2 c1);trivial.
- elim H0;trivial. elim H0;trivial.
-Qed.
-
-Lemma gcd_log2_Zle_log :
- forall a b c, log2 b <= log2 c -> Zpos b <= Zpos a ->
- gcd_log2 a b c = gcd_log2 a b b.
-Proof.
- intros a b c H1 H2; apply gcd_log2_Zle; trivial.
- apply gcd_log2_None; trivial.
-Qed.
-
-Lemma gcd_log2_mod0 :
- forall a b c, a mod b = N0 -> gcd_log2 a b c = Some b.
-Proof. intros a b c H;destruct c;simpl;rewrite H;trivial. Qed.
-
-
-Require Import Zwf.
-
-Lemma Zwf_pos : well_founded (fun x y => Zpos x < Zpos y).
-Proof.
- unfold well_founded.
- assert (forall x a ,x = Zpos a -> Acc (fun x y : positive => x < y) a).
- intros x;assert (Hacc := Zwf_well_founded 0 x);induction Hacc;intros;subst x.
- constructor;intros. apply H0 with (Zpos y);trivial.
- split;auto with zarith.
- intros a;apply H with (Zpos a);trivial.
-Qed.
-
-Opaque Pmod.
-Lemma gcd_log2_mod : forall a b, Zpos b <= Zpos a ->
- forall r, a mod b = Npos r -> gcd_log2 a b b = gcd_log2 b r r.
-Proof.
- intros a b;generalize a;clear a; assert (Hacc := Zwf_pos b).
- induction Hacc; intros a Hle r Hmod.
- rename x into b. destruct b;simpl;rewrite Hmod.
- CaseEq (xI b mod r)%P;intros. rewrite gcd_log2_mod0;trivial.
- assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod);
- assert (H4 := mod_le _ _ _ Hmod).
- rewrite (gcd_log2_Zle_log r p b);trivial.
- symmetry;apply H0;trivial.
- generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega.
- CaseEq (xO b mod r)%P;intros. rewrite gcd_log2_mod0;trivial.
- assert (H2 := mod_le _ _ _ H1);assert (H3 := mod_lt _ _ _ Hmod);
- assert (H4 := mod_le _ _ _ Hmod).
- rewrite (gcd_log2_Zle_log r p b);trivial.
- symmetry;apply H0;trivial.
- generalize (mod_log2 _ _ _ H1 H4);simpl;zsimpl;intros;omega.
- rewrite mod1 in Hmod;discriminate Hmod.
-Qed.
-
-Lemma gcd_log2_xO_Zle :
- forall a b, Zpos b <= Zpos a -> gcd_log2 a b (xO b) = gcd_log2 a b b.
-Proof.
- intros a b Hle;apply gcd_log2_Zle.
- simpl;zsimpl;auto with zarith.
- apply gcd_log2_None_aux;auto with zarith.
-Qed.
-
-Lemma gcd_log2_xO_Zlt :
- forall a b, Zpos a < Zpos b -> gcd_log2 a b (xO b) = gcd_log2 b a a.
-Proof.
- intros a b H;simpl. assert (Hlt := Zlt_0_pos a).
- assert (H0 := lt_mod _ _ H).
- rewrite H0;simpl.
- CaseEq (b mod a)%P;intros;simpl.
- symmetry;apply gcd_log2_mod0;trivial.
- assert (H2 := mod_lt _ _ _ H1).
- rewrite (gcd_log2_Zle_log a p b);auto with zarith.
- symmetry;apply gcd_log2_mod;auto with zarith.
- apply log2_Zle.
- replace (Zpos p) with (Z_of_N (Npos p));trivial.
- apply mod_le_a with a;trivial.
-Qed.
-
-Lemma gcd_log2_x0 : forall a b, gcd_log2 a b (xO b) <> None.
-Proof.
- intros;simpl;CaseEq (a mod b)%P;intros. intro;discriminate.
- CaseEq (b mod p)%P;intros. intro;discriminate.
- assert (H1 := mod_le_a _ _ _ H0). unfold Z_of_N in H1.
- assert (H2 := mod_le _ _ _ H0).
- apply gcd_log2_None_aux. trivial.
- apply log2_Zle. trivial.
-Qed.
-
-Lemma egcd_log2_x0 : forall a b, egcd_log2 a b (xO b) <> None.
-Proof.
-intros a b H; generalize (egcd_gcd_log2 (xO b) a b) (gcd_log2_x0 a b);
- rw H; case gcd_log2; auto.
-Qed.
-
-Definition gcd a b :=
- match gcd_log2 a b (xO b) with
- | Some p => p
- | None => (* can not appear *) 1%positive
- end.
-
-Definition egcd a b :=
- match egcd_log2 a b (xO b) with
- | Some p => p
- | None => (* can not appear *) (1,1,1%positive)
- end.
-
-
-Lemma gcd_mod0 : forall a b, (a mod b)%P = N0 -> gcd a b = b.
-Proof.
- intros a b H;unfold gcd.
- pattern (gcd_log2 a b (xO b)) at 1;
- rewrite (gcd_log2_mod0 _ _ (xO b) H);trivial.
-Qed.
-
-Lemma gcd1 : forall a, gcd a xH = xH.
-Proof. intros a;rewrite gcd_mod0;[trivial|apply mod1]. Qed.
-
-Lemma gcd_mod : forall a b r, (a mod b)%P = Npos r ->
- gcd a b = gcd b r.
-Proof.
- intros a b r H;unfold gcd.
- assert (log2 r <= log2 (xO r)). simpl;zsimpl;omega.
- assert (H1 := mod_lt _ _ _ H).
- pattern (gcd_log2 b r (xO r)) at 1; rewrite gcd_log2_Zle_log;auto with zarith.
- destruct (Z_lt_le_dec a b).
- pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_xO_Zlt;trivial.
- rewrite (lt_mod _ _ z) in H;inversion H.
- assert (r <= b). omega.
- generalize (gcd_log2_None _ _ H2).
- destruct (gcd_log2 b r r);intros;trivial.
- assert (log2 b <= log2 (xO b)). simpl;zsimpl;omega.
- pattern (gcd_log2 a b (xO b)) at 1; rewrite gcd_log2_Zle_log;auto with zarith.
- pattern (gcd_log2 a b b) at 1;rewrite (gcd_log2_mod _ _ z _ H).
- assert (r <= b). omega.
- generalize (gcd_log2_None _ _ H3).
- destruct (gcd_log2 b r r);intros;trivial.
-Qed.
-
-Require Import ZArith.
-Require Import Znumtheory.
-
-Hint Rewrite Zpos_mult times_Zmult square_Zmult Psucc_Zplus: zmisc.
-
-Ltac mauto :=
- trivial;autorewrite with zmisc;trivial;auto with zarith.
-
-Lemma gcd_Zis_gcd : forall a b:positive, (Zis_gcd b a (gcd b a)%P).
-Proof with mauto.
- intros a;assert (Hacc := Zwf_pos a);induction Hacc;rename x into a;intros.
- generalize (div_eucl_spec b a)...
- rewrite <- (Pmod_div_eucl b a).
- CaseEq (b mod a)%P;[intros Heq|intros r Heq]; intros (H1,H2).
- simpl in H1;rewrite Zplus_0_r in H1.
- rewrite (gcd_mod0 _ _ Heq).
- constructor;mauto.
- apply Zdivide_intro with (fst (b/a)%P);trivial.
- rewrite (gcd_mod _ _ _ Heq).
- rewrite H1;apply Zis_gcd_sym.
- rewrite Zmult_comm;apply Zis_gcd_for_euclid2;simpl in *.
- apply Zis_gcd_sym;auto.
-Qed.
-
-Lemma egcd_Zis_gcd : forall a b:positive,
- let (uv,w) := egcd a b in
- let (u,v) := uv in
- u * a + v * b = w /\ (Zis_gcd b a w).
-Proof with mauto.
- intros a b; unfold egcd.
- generalize (egcd_log2_ok (xO b) a b) (egcd_gcd_log2 (xO b) a b)
- (egcd_log2_x0 a b) (gcd_Zis_gcd b a); unfold egcd, gcd.
- case egcd_log2; try (intros ((u,v),w)); case gcd_log2;
- try (intros; match goal with H: False |- _ => case H end);
- try (intros _ _ H1; case H1; auto; fail).
- intros; subst; split; try apply Zis_gcd_sym; auto.
-Qed.
-
-Definition Zgcd a b :=
- match a, b with
- | Z0, _ => b
- | _, Z0 => a
- | Zpos a, Zneg b => Zpos (gcd a b)
- | Zneg a, Zpos b => Zpos (gcd a b)
- | Zpos a, Zpos b => Zpos (gcd a b)
- | Zneg a, Zneg b => Zpos (gcd a b)
- end.
-
-
-Lemma Zgcd_is_gcd : forall x y, Zis_gcd x y (Zgcd x y).
-Proof.
- destruct x;destruct y;simpl.
- apply Zis_gcd_0.
- apply Zis_gcd_sym;apply Zis_gcd_0.
- apply Zis_gcd_sym;apply Zis_gcd_0.
- apply Zis_gcd_0.
- apply gcd_Zis_gcd.
- apply Zis_gcd_sym;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd.
- apply Zis_gcd_0.
- apply Zis_gcd_minus;simpl;apply Zis_gcd_sym;apply gcd_Zis_gcd.
- apply Zis_gcd_minus;apply Zis_gcd_minus;simpl;apply gcd_Zis_gcd.
-Qed.
-
-Definition Zegcd a b :=
- match a, b with
- | Z0, Z0 => (0,0,0)
- | Zpos _, Z0 => (1,0,a)
- | Zneg _, Z0 => (-1,0,-a)
- | Z0, Zpos _ => (0,1,b)
- | Z0, Zneg _ => (0,-1,-b)
- | Zpos a, Zneg b =>
- match egcd a b with (u,v,w) => (u,-v, Zpos w) end
- | Zneg a, Zpos b =>
- match egcd a b with (u,v,w) => (-u,v, Zpos w) end
- | Zpos a, Zpos b =>
- match egcd a b with (u,v,w) => (u,v, Zpos w) end
- | Zneg a, Zneg b =>
- match egcd a b with (u,v,w) => (-u,-v, Zpos w) end
- end.
-
-Lemma Zegcd_is_egcd : forall x y,
- match Zegcd x y with
- (u,v,w) => u * x + v * y = w /\ Zis_gcd x y w /\ 0 <= w
- end.
-Proof.
- assert (zx0: forall x, Zneg x = -x).
- simpl; auto.
- assert (zx1: forall x, -(-x) = x).
- intro x; case x; simpl; auto.
- destruct x;destruct y;simpl; try (split; [idtac|split]);
- auto; try (red; simpl; intros; discriminate);
- try (rewrite zx0; apply Zis_gcd_minus; try rewrite zx1; auto;
- apply Zis_gcd_minus; try rewrite zx1; simpl; auto);
- try apply Zis_gcd_0; try (apply Zis_gcd_sym;apply Zis_gcd_0);
- generalize (egcd_Zis_gcd p p0); case egcd; intros (u,v,w) (H1, H2);
- split; repeat rewrite zx0; try (rewrite <- H1; ring); auto;
- (split; [idtac | red; intros; discriminate]).
- apply Zis_gcd_sym; auto.
- apply Zis_gcd_sym; apply Zis_gcd_minus; rw zx1;
- apply Zis_gcd_sym; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_minus; rw zx1; auto.
- apply Zis_gcd_sym; auto.
-Qed.
diff --git a/theories/Ints/Z/Ppow.v b/theories/Ints/Z/Ppow.v
deleted file mode 100644
index b4e4ca5ef..000000000
--- a/theories/Ints/Z/Ppow.v
+++ /dev/null
@@ -1,39 +0,0 @@
-Require Import ZArith.
-Require Import ZAux.
-
-Open Scope Z_scope.
-
-Fixpoint Ppow a z {struct z}:=
- match z with
- xH => a
- | xO z1 => let v := Ppow a z1 in (Pmult v v)
- | xI z1 => let v := Ppow a z1 in (Pmult a (Pmult v v))
- end.
-
-Theorem Ppow_correct: forall a z,
- Zpos (Ppow a z) = (Zpos a) ^ (Zpos z).
-intros a z; elim z; simpl Ppow; auto;
- try (intros z1 Hrec; repeat rewrite Zpos_mult_morphism; rewrite Hrec).
- rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_exp_1; rewrite (Zmult_comm 2);
- try rewrite Zpower_mult; auto with zarith.
- change 2 with (1 + 1); rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_exp_1; rewrite Zmult_comm; auto.
- apply Zle_ge; auto with zarith.
- rewrite Zpos_xO; rewrite (Zmult_comm 2);
- rewrite Zpower_mult; auto with zarith.
- change 2 with (1 + 1); rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_exp_1; auto.
- rewrite Zpower_exp_1; auto.
-Qed.
-
-Theorem Ppow_plus: forall a z1 z2,
- Ppow a (z1 + z2) = ((Ppow a z1) * (Ppow a z2))%positive.
-intros a z1 z2.
- assert (tmp: forall x y, Zpos x = Zpos y -> x = y).
- intros x y H; injection H; auto.
- apply tmp.
- rewrite Zpos_mult_morphism; repeat rewrite Ppow_correct.
- rewrite Zpos_plus_distr; rewrite Zpower_exp; auto; red; simpl;
- intros; discriminate.
-Qed.
diff --git a/theories/Ints/Z/ZAux.v b/theories/Ints/Z/ZAux.v
index 83337ee50..8e4b1d64f 100644
--- a/theories/Ints/Z/ZAux.v
+++ b/theories/Ints/Z/ZAux.v
@@ -15,8 +15,13 @@
Require Import ArithRing.
Require Export ZArith.
Require Export Znumtheory.
-Require Export Tactic.
-(* Require Import MOmega. *)
+Require Export Zpow_facts.
+
+(* *** Nota Bene ***
+ All results that were general enough has been moved in ZArith.
+ Only remain here specialized lemmas and compatibility elements.
+ (P.L. 5/11/2007).
+*)
Open Local Scope Z_scope.
@@ -35,51 +40,18 @@ Hint Extern 2 (Zlt _ _) =>
| H: _ < ?p |- _ <= ?p => apply Zle_lt_trans with (2 := H)
end).
+
+Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith.
+
(**************************************
Properties of order and product
**************************************)
-Theorem Zmult_interval: forall p q, 0 < p * q -> 1 < p -> 0 < q < p * q.
-intros p q H1 H2; assert (0 < q).
-case (Zle_or_lt q 0); auto; intros H3; contradict H1; apply Zle_not_lt.
-rewrite <- (Zmult_0_r p).
-apply Zmult_le_compat_l; auto with zarith.
-split; auto.
-pattern q at 1; rewrite <- (Zmult_1_l q).
-apply Zmult_lt_compat_r; auto with zarith.
-Qed.
-
-Theorem Zmult_lt_compat: forall n m p q : Z, 0 < n <= p -> 0 < m < q -> n * m < p * q.
-intros n m p q (H1, H2) (H3, H4).
-apply Zle_lt_trans with (p * m).
-apply Zmult_le_compat_r; auto with zarith.
-apply Zmult_lt_compat_l; auto with zarith.
-Qed.
-
-Theorem Zle_square_mult: forall a b, 0 <= a <= b -> a * a <= b * b.
-intros a b (H1, H2); apply Zle_trans with (a * b); auto with zarith.
-Qed.
-
-Theorem Zlt_square_mult: forall a b, 0 <= a < b -> a * a < b * b.
-intros a b (H1, H2); apply Zle_lt_trans with (a * b); auto with zarith.
-apply Zmult_lt_compat_r; auto with zarith.
-Qed.
-
-Theorem Zlt_square_mult_inv: forall a b, 0 <= a -> 0 <= b -> a * a < b * b -> a < b.
-intros a b H1 H2 H3; case (Zle_or_lt b a); auto; intros H4; apply Zmult_lt_reg_r with a;
- contradict H3; apply Zle_not_lt; apply Zle_square_mult; auto.
-Qed.
-
-
-Theorem Zpower_2: forall x, x^2 = x * x.
-intros; ring.
-Qed.
-
Theorem beta_lex: forall a b c d beta,
a * beta + b <= c * beta + d ->
0 <= b < beta -> 0 <= d < beta ->
a <= c.
-Proof.
+ Proof.
intros a b c d beta H1 (H3, H4) (H5, H6).
assert (a - c < 1); auto with zarith.
apply Zmult_lt_reg_r with beta; auto with zarith.
@@ -175,1203 +147,161 @@ Theorem mult_add_ineq3: forall x y c cross beta,
apply Zle_trans with (1*beta+cross);auto with zarith.
Qed.
-
-(**************************************
- Properties of Z_nat
- **************************************)
-
-Theorem inj_eq_inv: forall (n m : nat), Z_of_nat n = Z_of_nat m -> n = m.
-intros n m H1; case (le_or_lt n m); auto with arith.
-intros H2; case (le_lt_or_eq _ _ H2); auto; intros H3.
-contradict H1; auto with zarith.
-intros H2; contradict H1; auto with zarith.
-Qed.
-
-Theorem inj_le_inv: forall (n m : nat), Z_of_nat n <= Z_of_nat m-> (n <= m)%nat.
-intros n m H1; case (le_or_lt n m); auto with arith.
-intros H2; contradict H1; auto with zarith.
-Qed.
-
-Theorem Z_of_nat_Zabs_nat:
- forall (z : Z), 0 <= z -> Z_of_nat (Zabs_nat z) = z.
-intros z; case z; simpl; auto with zarith.
-intros; apply sym_equal; apply Zpos_eq_Z_of_nat_o_nat_of_P; auto.
-intros p H1; contradict H1; simpl; auto with zarith.
-Qed.
-
-(**************************************
- Properties of Zabs
-**************************************)
-
-Theorem Zabs_square: forall a, a * a = Zabs a * Zabs a.
-intros a; rewrite <- Zabs_Zmult; apply sym_equal; apply Zabs_eq;
- auto with zarith.
-case (Zle_or_lt 0%Z a); auto with zarith.
-intros Ha; replace (a * a) with (- a * - a); auto with zarith.
-ring.
-Qed.
-
-(**************************************
- Properties of Zabs_nat
-**************************************)
-
-Theorem Z_of_nat_abs_le:
- forall x y, x <= y -> x + Z_of_nat (Zabs_nat (y - x)) = y.
-intros x y Hx1.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-Theorem Zabs_nat_Zsucc:
- forall p, 0 <= p -> Zabs_nat (Zsucc p) = S (Zabs_nat p).
-intros p Hp.
-apply inj_eq_inv.
-rewrite inj_S; (repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-Qed.
-
-Theorem Zabs_nat_Z_of_nat: forall n, Zabs_nat (Z_of_nat n) = n.
-intros n1; apply inj_eq_inv; rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-
-(**************************************
- Properties Zsqrt_plain
-**************************************)
-
-Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n.
-intros n m; case (Zsqrt_interval n); auto with zarith.
-intros H1 H2; case (Zle_or_lt 0 (Zsqrt_plain n)); auto.
-intros H3; contradict H2; apply Zle_not_lt.
-apply Zle_trans with ( 2 := H1 ).
-replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1))
- with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1));
- auto with zarith.
-ring.
-Qed.
-
-Theorem Zsqrt_square_id: forall a, 0 <= a -> Zsqrt_plain (a * a) = a.
-intros a H.
-generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa.
-case (Zsqrt_interval (a * a)); auto with zarith.
-intros H1 H2.
-case (Zle_or_lt a (Zsqrt_plain (a * a))); intros H3; auto.
-case Zle_lt_or_eq with ( 1 := H3 ); auto; clear H3; intros H3.
-contradict H1; apply Zlt_not_le; auto with zarith.
-apply Zle_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith.
-apply Zmult_lt_compat_r; auto with zarith.
-contradict H2; apply Zle_not_lt; auto with zarith.
-apply Zmult_le_compat; auto with zarith.
-Qed.
-
-Theorem Zsqrt_le:
- forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q.
-intros p q [H1 H2]; case Zle_lt_or_eq with ( 1 := H2 ); clear H2; intros H2.
-2:subst q; auto with zarith.
-case (Zle_or_lt (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3.
-assert (Hp: (0 <= Zsqrt_plain q)).
-apply Zsqrt_plain_is_pos; auto with zarith.
-absurd (q <= p); auto with zarith.
-apply Zle_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)).
-case (Zsqrt_interval q); auto with zarith.
-apply Zle_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith.
-apply Zmult_le_compat; auto with zarith.
-case (Zsqrt_interval p); auto with zarith.
-Qed.
+Hint Rewrite Zmult_1_r Zmult_0_r Zmult_1_l Zmult_0_l Zplus_0_l Zplus_0_r Zminus_0_r: rm10.
(**************************************
- Properties Zpower
+ Properties of Zdiv and Zmod
**************************************)
-Theorem Zpower_1: forall a, 0 <= a -> 1 ^ a = 1.
-intros a Ha; pattern a; apply natlike_ind; auto with zarith.
-intros x Hx Hx1; unfold Zsucc.
-rewrite Zpower_exp; auto with zarith.
-rewrite Hx1; simpl; auto.
-Qed.
-
-Theorem Zpower_exp_0: forall a, a ^ 0 = 1.
-simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
-
-Theorem Zpower_exp_1: forall a, a ^ 1 = a.
-simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
-
-Theorem Zpower_Zabs: forall a b, Zabs (a ^ b) = (Zabs a) ^ b.
-intros a b; case (Zle_or_lt 0 b).
-intros Hb; pattern b; apply natlike_ind; auto with zarith.
-intros x Hx Hx1; unfold Zsucc.
-(repeat rewrite Zpower_exp); auto with zarith.
-rewrite Zabs_Zmult; rewrite Hx1.
-eq_tac; auto.
-replace (a ^ 1) with a; auto.
-simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
-simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
-case b; simpl; auto with zarith.
-intros p Hp; discriminate.
-Qed.
-
-Theorem Zpower_Zsucc: forall p n, 0 <= n -> p ^Zsucc n = p * p ^ n.
-intros p n H.
-unfold Zsucc; rewrite Zpower_exp; auto with zarith.
-rewrite Zpower_exp_1; apply Zmult_comm.
-Qed.
-
-Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p ^ (q * r) = (p ^ q) ^ r.
-intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
-intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto.
-intros r1 H3 H4 H5.
-unfold Zsucc; rewrite Zpower_exp; auto with zarith.
-rewrite <- H4; try rewrite Zpower_exp_1; try rewrite <- Zpower_exp; try eq_tac; auto with zarith.
-ring.
-apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto.
-Qed.
-
-Theorem Zpower_lt_0: forall a b: Z, 0 < a -> 0 <= b-> 0 < a ^b.
-intros a b; case b; auto with zarith.
-simpl; intros; auto with zarith.
-2: intros p H H1; case H1; auto.
-intros p H1 H; generalize H; pattern (Zpos p); apply natlike_ind; auto.
-intros; case a; compute; auto.
-intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
-apply Zmult_lt_O_compat; auto with zarith.
-generalize H1; case a; compute; intros; auto; discriminate.
-Qed.
-
-Theorem Zpower_le_monotone: forall a b c: Z, 0 < a -> 0 <= b <= c -> a ^ b <= a ^ c.
-intros a b c H (H1, H2).
-rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-apply Zmult_le_compat_l; auto with zarith.
-assert (0 < a ^ (c - b)); auto with zarith.
-apply Zpower_lt_0; auto with zarith.
-apply Zlt_le_weak; apply Zpower_lt_0; auto with zarith.
-Qed.
-
-Theorem Zpower_lt_monotone: forall a b c: Z, 1 < a -> 0 <= b < c -> a ^ b < a ^ c.
-intros a b c H (H1, H2).
-rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-apply Zmult_lt_compat_l; auto with zarith.
-apply Zpower_lt_0; auto with zarith.
-assert (0 < a ^ (c - b)); auto with zarith.
-apply Zpower_lt_0; auto with zarith.
-apply Zlt_le_trans with (a ^1); auto with zarith.
-rewrite Zpower_exp_1; auto with zarith.
-apply Zpower_le_monotone; auto with zarith.
-Qed.
+Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a.
+ Proof.
+ intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto.
+ case (Zle_or_lt b a); intros H4; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ Qed.
-Theorem Zpower_nat_Zpower: forall p q, 0 <= q -> p ^ q = Zpower_nat p (Zabs_nat q).
-intros p1 q1; case q1; simpl.
-intros _; exact (refl_equal _).
-intros p2 _; apply Zpower_pos_nat.
-intros p2 H1; case H1; auto.
-Qed.
-Theorem Zgt_pow_1 : forall n m : Z, 0 < n -> 1 < m -> 1 < m ^ n.
-Proof.
-intros n m H1 H2.
-replace 1 with (m ^ 0) by apply Zpower_exp_0.
-apply Zpower_lt_monotone; auto with zarith.
-Qed.
+ Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t.
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (t < 2 ^ b).
+ apply Zlt_le_trans with (1:= H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_small with (a := t); auto with zarith.
+ apply Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert (0 <= 2 ^a * r); auto with zarith.
+ apply Zplus_le_0_compat; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a);
+ try ring.
+ apply Zplus_le_lt_compat; auto with zarith.
+ replace b with ((b - a) + a); try ring.
+ rewrite Zpower_exp; auto with zarith.
+ pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
+ try rewrite <- Zmult_minus_distr_r.
+ rewrite (Zmult_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l;
+ auto with zarith.
+ rewrite (Zmult_comm (2 ^a)); apply Zmult_le_compat_r; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
-(**************************************
- Properties Zmod
-**************************************)
-
-Theorem Zmod_mult:
- forall a b n, 0 < n -> (a * b) mod n = ((a mod n) * (b mod n)) mod n.
-intros a b n H.
-pattern a at 1; rewrite (Z_div_mod_eq a n); auto with zarith.
-pattern b at 1; rewrite (Z_div_mod_eq b n); auto with zarith.
-replace ((n * (a / n) + a mod n) * (n * (b / n) + b mod n))
- with
- ((a mod n) * (b mod n) +
- (((n * (a / n)) * (b / n) + (b mod n) * (a / n)) + (a mod n) * (b / n)) *
- n); auto with zarith.
-apply Z_mod_plus; auto with zarith.
-ring.
-Qed.
+ Theorem Zmod_shift_r:
+ forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (r * 2 ^a + t) mod (2 ^ b) = (r * 2 ^a) mod (2 ^ b) + t.
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (t < 2 ^ b).
+ apply Zlt_le_trans with (1:= H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_small with (a := t); auto with zarith.
+ apply Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert (0 <= 2 ^a * r); auto with zarith.
+ apply Zplus_le_0_compat; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring.
+ apply Zplus_le_lt_compat; auto with zarith.
+ replace b with ((b - a) + a); try ring.
+ rewrite Zpower_exp; auto with zarith.
+ pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
+ try rewrite <- Zmult_minus_distr_r.
+ repeat rewrite (fun x => Zmult_comm x (2 ^ a)); rewrite Zmult_mod_distr_l;
+ auto with zarith.
+ apply Zmult_le_compat_l; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
-Theorem Zmod_plus:
- forall a b n, 0 < n -> (a + b) mod n = (a mod n + b mod n) mod n.
-intros a b n H.
-pattern a at 1; rewrite (Z_div_mod_eq a n); auto with zarith.
-pattern b at 1; rewrite (Z_div_mod_eq b n); auto with zarith.
-replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n))
- with ((a mod n + b mod n) + (a / n + b / n) * n); auto with zarith.
-apply Z_mod_plus; auto with zarith.
-ring.
-Qed.
+ Theorem Zdiv_shift_r:
+ forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (r * 2 ^a + t) / (2 ^ b) = (r * 2 ^a) / (2 ^ b).
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (Eq: t < 2 ^ b); auto with zarith.
+ apply Zlt_le_trans with (1 := H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b);
+ auto with zarith.
+ rewrite <- Zplus_assoc.
+ rewrite <- Zmod_shift_r; auto with zarith.
+ rewrite (Zmult_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite (fun x y => @Zdiv_small (x mod y)); auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
+
+
+ Lemma shift_unshift_mod : forall n p a,
+ 0 <= a < 2^n ->
+ 0 <= p <= n ->
+ a * 2^p = a / 2^(n - p) * 2^n + (a*2^p) mod 2^n.
+ Proof.
+ intros n p a H1 H2.
+ pattern (a*2^p) at 1;replace (a*2^p) with
+ (a*2^p/2^n * 2^n + a*2^p mod 2^n).
+ 2:symmetry;rewrite (Zmult_comm (a*2^p/2^n));apply Z_div_mod_eq.
+ replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial.
+ replace (2^n) with (2^(n-p)*2^p).
+ symmetry;apply Zdiv_mult_cancel_r.
+ destruct H1;trivial.
+ cut (0 < 2^p); auto with zarith.
+ rewrite <- Zpower_exp.
+ replace (n-p+p) with n;trivial. ring.
+ omega. omega.
+ apply Zlt_gt. apply Zpower_gt_0;auto with zarith.
+ Qed.
-Theorem Zmod_mod: forall a n, 0 < n -> (a mod n) mod n = a mod n.
-intros a n H.
-pattern a at 2; rewrite (Z_div_mod_eq a n); auto with zarith.
-rewrite Zplus_comm; rewrite Zmult_comm.
-apply sym_equal; apply Z_mod_plus; auto with zarith.
-Qed.
+ Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p.
+ Proof.
+ intros p x Hle;destruct (Z_le_gt_dec 0 p).
+ apply Zdiv_le_lower_bound;auto with zarith.
+ replace (2^p) with 0.
+ destruct x;compute;intro;discriminate.
+ destruct p;trivial;discriminate z.
+ Qed.
-Theorem Zmod_def_small: forall a n, 0 <= a < n -> a mod n = a.
-intros a n [H1 H2]; unfold Zmod.
-generalize (Z_div_mod a n); case (Zdiv_eucl a n).
-intros q r H3; case H3; clear H3; auto with zarith.
-auto with zarith.
-intros H4 [H5 H6].
-case (Zle_or_lt q (- 1)); intros H7.
-contradict H1; apply Zlt_not_le.
-subst a.
-apply Zle_lt_trans with (n * - 1 + r); auto with zarith.
-case (Zle_lt_or_eq 0 q); auto with zarith; intros H8.
-contradict H2; apply Zle_not_lt.
-apply Zle_trans with (n * 1 + r); auto with zarith.
-rewrite H4; auto with zarith.
-subst a; subst q; auto with zarith.
-Qed.
-
-Theorem Zmod_minus: forall a b n, 0 < n -> (a - b) mod n = (a mod n - b mod n) mod n.
-intros a b n H; replace (a - b) with (a + (-1) * b); auto with zarith.
-replace (a mod n - b mod n) with (a mod n + (-1) * (b mod n)); auto with zarith.
-rewrite Zmod_plus; auto with zarith.
-rewrite Zmod_mult; auto with zarith.
-rewrite (fun x y => Zmod_plus x ((-1) * y)); auto with zarith.
-rewrite Zmod_mult; auto with zarith.
-rewrite (fun x => Zmod_mult x (b mod n)); auto with zarith.
-repeat rewrite Zmod_mod; auto.
-Qed.
-
-Theorem Zmod_Zpower: forall p q n, 0 < n -> (p ^ q) mod n = ((p mod n) ^ q) mod n.
-intros p q n Hn; case (Zle_or_lt 0 q); intros H1.
-generalize H1; pattern q; apply natlike_ind; auto.
-intros q1 Hq1 Rec _; unfold Zsucc; repeat rewrite Zpower_exp; repeat rewrite Zpower_exp_1; auto with zarith.
-rewrite (fun x => (Zmod_mult x p)); try rewrite Rec; auto.
-rewrite (fun x y => (Zmod_mult (x ^y))); try eq_tac; auto.
-eq_tac; auto; apply sym_equal; apply Zmod_mod; auto with zarith.
-generalize H1; case q; simpl; auto.
-intros; discriminate.
-Qed.
-
-Theorem Zmod_le: forall a n, 0 < n -> 0 <= a -> (Zmod a n) <= a.
-intros a n H1 H2; case (Zle_or_lt n a); intros H3.
-case (Z_mod_lt a n); auto with zarith.
-rewrite Zmod_def_small; auto with zarith.
-Qed.
-
-Lemma Zplus_mod_idemp_l: forall a b n, 0 < n -> (a mod n + b) mod n = (a + b) mod n.
-Proof.
-intros. rewrite Zmod_plus; auto.
-rewrite Zmod_mod; auto.
-symmetry; apply Zmod_plus; auto.
-Qed.
-
-Lemma Zplus_mod_idemp_r: forall a b n, 0 < n -> (b + a mod n) mod n = (b + a) mod n.
-Proof.
-intros a b n H; repeat rewrite (Zplus_comm b).
-apply Zplus_mod_idemp_l; auto.
-Qed.
-
-Lemma Zminus_mod_idemp_l: forall a b n, 0 < n -> (a mod n - b) mod n = (a - b) mod n.
-Proof.
-intros. rewrite Zmod_minus; auto.
-rewrite Zmod_mod; auto.
-symmetry; apply Zmod_minus; auto.
-Qed.
-
-Lemma Zminus_mod_idemp_r: forall a b n, 0 < n -> (a - b mod n) mod n = (a - b) mod n.
-Proof.
-intros. rewrite Zmod_minus; auto.
-rewrite Zmod_mod; auto.
-symmetry; apply Zmod_minus; auto.
-Qed.
-
-Lemma Zmult_mod_idemp_l: forall a b n, 0 < n -> (a mod n * b) mod n = (a * b) mod n.
-Proof.
-intros; rewrite Zmod_mult; auto.
-rewrite Zmod_mod; auto.
-symmetry; apply Zmod_mult; auto.
-Qed.
-
-Lemma Zmult_mod_idemp_r: forall a b n, 0 < n -> (b * (a mod n)) mod n = (b * a) mod n.
-Proof.
-intros a b n H; repeat rewrite (Zmult_comm b).
-apply Zmult_mod_idemp_l; auto.
-Qed.
-
-Lemma Zmod_div_mod: forall n m a, 0 < n -> 0 < m ->
- (n | m) -> a mod n = (a mod m) mod n.
-Proof.
-intros n m a H1 H2 H3.
-pattern a at 1; rewrite (Z_div_mod_eq a m); auto with zarith.
-case H3; intros q Hq; pattern m at 1; rewrite Hq.
-rewrite (Zmult_comm q).
-rewrite Zmod_plus; auto.
-rewrite <- Zmult_assoc; rewrite Zmod_mult; auto.
-rewrite Z_mod_same; try rewrite Zmult_0_l; auto with zarith.
-rewrite (Zmod_def_small 0); auto with zarith.
-rewrite Zplus_0_l; rewrite Zmod_mod; auto with zarith.
-Qed.
-
-(** A better way to compute Zpower mod **)
-
-Fixpoint Zpow_mod_pos (a: Z) (m: positive) (n : Z) {struct m} : Z :=
- match m with
- | xH => a mod n
- | xO m' =>
- let z := Zpow_mod_pos a m' n in
- match z with
- | 0 => 0
- | _ => (z * z) mod n
- end
- | xI m' =>
- let z := Zpow_mod_pos a m' n in
- match z with
- | 0 => 0
- | _ => (z * z * a) mod n
- end
- end.
-
-Theorem Zpow_mod_pos_Zpower_pos_correct: forall a m n, 0 < n -> Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
-intros a m; elim m; simpl; auto.
-intros p Rec n H1; rewrite xI_succ_xO; rewrite Pplus_one_succ_r; rewrite <- Pplus_diag; auto.
-repeat rewrite Zpower_pos_is_exp; auto.
-repeat rewrite Rec; auto.
-replace (Zpower_pos a 1) with a; auto.
-2: unfold Zpower_pos; simpl; auto with zarith.
-repeat rewrite (fun x => (Zmod_mult x a)); auto.
-rewrite (Zmod_mult (Zpower_pos a p)); auto.
-case (Zpower_pos a p mod n); auto.
-intros p Rec n H1; rewrite <- Pplus_diag; auto.
-repeat rewrite Zpower_pos_is_exp; auto.
-repeat rewrite Rec; auto.
-rewrite (Zmod_mult (Zpower_pos a p)); auto.
-case (Zpower_pos a p mod n); auto.
-unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
-Qed.
-
-Definition Zpow_mod a m n := match m with 0 => 1 | Zpos p1 => Zpow_mod_pos a p1 n | Zneg p1 => 0 end.
-
-Theorem Zpow_mod_Zpower_correct: forall a m n, 1 < n -> 0 <= m -> Zpow_mod a m n = (a ^ m) mod n.
-intros a m n; case m; simpl.
-intros; apply sym_equal; apply Zmod_def_small; auto with zarith.
-intros; apply Zpow_mod_pos_Zpower_pos_correct; auto with zarith.
-intros p H H1; case H1; auto.
-Qed.
-
-(* A direct way to compute Zmod *)
-
-Fixpoint Zmod_POS (a : positive) (b : Z) {struct a} : Z :=
- match a with
- | xI a' =>
- let r := Zmod_POS a' b in
- let r' := (2 * r + 1) in
- if Zgt_bool b r' then r' else (r' - b)
- | xO a' =>
- let r := Zmod_POS a' b in
- let r' := (2 * r) in
- if Zgt_bool b r' then r' else (r' - b)
- | xH => if Zge_bool b 2 then 1 else 0
- end.
-
-Theorem Zmod_POS_correct: forall a b, Zmod_POS a b = (snd (Zdiv_eucl_POS a b)).
-intros a b; elim a; simpl; auto.
-intros p Rec; rewrite Rec.
-case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
-match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
-intros p Rec; rewrite Rec.
-case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
-match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
-case (Zge_bool b 2); auto.
-Qed.
-
-Definition Zmodd a b :=
-match a with
-| Z0 => 0
-| Zpos a' =>
- match b with
- | Z0 => 0
- | Zpos _ => Zmod_POS a' b
- | Zneg b' =>
- let r := Zmod_POS a' (Zpos b') in
- match r with Z0 => 0 | _ => b + r end
- end
-| Zneg a' =>
- match b with
- | Z0 => 0
- | Zpos _ =>
- let r := Zmod_POS a' b in
- match r with Z0 => 0 | _ => b - r end
- | Zneg b' => - (Zmod_POS a' (Zpos b'))
- end
-end.
-
-Theorem Zmodd_correct: forall a b, Zmodd a b = Zmod a b.
-intros a b; unfold Zmod; case a; simpl; auto.
-intros p; case b; simpl; auto.
-intros p1; refine (Zmod_POS_correct _ _); auto.
-intros p1; rewrite Zmod_POS_correct; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
-intros p; case b; simpl; auto.
-intros p1; rewrite Zmod_POS_correct; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
-intros p1; rewrite Zmod_POS_correct; simpl; auto.
-case (Zdiv_eucl_POS p (Zpos p1)); auto.
-Qed.
-
-(**************************************
- Properties of Zdivide
-**************************************)
-
-Theorem Zmod_divide_minus: forall a b c : Z,
- 0 < b -> a mod b = c -> (b | a - c).
-Proof.
- intros a b c H H1; apply Zmod_divide; auto with zarith.
- rewrite Zmod_minus; auto.
- rewrite H1; pattern c at 1; rewrite <- (Zmod_def_small c b); auto with zarith.
- rewrite Zminus_diag; apply Zmod_def_small; auto with zarith.
- subst; apply Z_mod_lt; auto with zarith.
-Qed.
-
-Theorem Zdivide_mod_minus: forall a b c : Z,
- 0 <= c < b -> (b | a -c) -> (a mod b) = c.
-Proof.
- intros a b c (H1, H2) H3; assert (0 < b); try apply Zle_lt_trans with c; auto.
- replace a with ((a - c) + c); auto with zarith.
- rewrite Zmod_plus; auto with zarith.
- rewrite (Zdivide_mod (a -c) b); try rewrite Zplus_0_l; auto with zarith.
- rewrite Zmod_mod; try apply Zmod_def_small; auto with zarith.
-Qed.
-
-Theorem Zmod_closeby_eq: forall a b n, 0 <= a -> 0 <= b < n -> a - b < n -> a mod n = b -> a = b.
-Proof.
- intros a b n H H1 H2 H3.
- case (Zle_or_lt 0 (a - b)); intros H4.
- case Zle_lt_or_eq with (1 := H4); clear H4; intros H4; auto with zarith.
- absurd_hyp H2; auto.
- apply Zle_not_lt; apply Zdivide_le; auto with zarith.
- apply Zmod_divide_minus; auto with zarith.
- rewrite <- (Zmod_def_small a n); try split; auto with zarith.
-Qed.
-
-Theorem Zpower_divide: forall p q, 0 < q -> (p | p ^ q).
-Proof.
- intros p q H; exists (p ^(q - 1)).
- pattern p at 3; rewrite <- (Zpower_exp_1 p); rewrite <- Zpower_exp; try eq_tac; auto with zarith.
-Qed.
-
-
-(**************************************
- Properties of Zis_gcd
-**************************************)
-
-(* P.L. : See Numtheory.v *)
+ Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y.
+ Proof.
+ intros p x y H;destruct (Z_le_gt_dec 0 p).
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ apply Zlt_le_trans with y;auto with zarith.
+ rewrite <- (Zmult_1_r y);apply Zmult_le_compat;auto with zarith.
+ assert (0 < 2^p);auto with zarith.
+ replace (2^p) with 0.
+ destruct x;change (0<y);auto with zarith.
+ destruct p;trivial;discriminate z.
+ Qed.
-(**************************************
- Properties rel_prime
-**************************************)
-
-Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.
-intros a b H; auto with zarith.
-red; apply Zis_gcd_sym; auto with zarith.
-Qed.
-
-Theorem rel_prime_le_prime:
- forall a p, prime p -> 1 <= a < p -> rel_prime a p.
-intros a p Hp [H1 H2].
-apply rel_prime_sym; apply prime_rel_prime; auto.
-intros [q Hq]; subst a.
-case (Zle_or_lt q 0); intros Hl.
-absurd (q * p <= 0 * p); auto with zarith.
-absurd (1 * p <= q * p); auto with zarith.
-Qed.
+ Theorem Zgcd_div_pos a b:
+ (0 < b)%Z -> (0 < Zgcd a b)%Z -> (0 < b / Zgcd a b)%Z.
+ Proof.
+ intros a b Ha Hg.
+ case (Zle_lt_or_eq 0 (b/Zgcd a b)); auto.
+ apply Z_div_pos; auto with zarith.
+ intros H; generalize Ha.
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite <- H; auto with zarith.
+ assert (F := (Zgcd_is_gcd a b)); inversion F; auto.
+ Qed.
-Definition rel_prime_dec:
- forall a b, ({ rel_prime a b }) + ({ ~ rel_prime a b }).
-intros a b; case (Z_eq_dec (Zgcd a b) 1); intros H1.
-left; red.
-rewrite <- H1; apply Zgcd_is_gcd.
-right; contradict H1.
-case (Zis_gcd_unique a b (Zgcd a b) 1); auto.
-apply Zgcd_is_gcd.
-intros H2; absurd (0 <= Zgcd a b); auto with zarith.
-generalize (Zgcd_is_pos a b); auto with zarith.
-Qed.
+(* For compatibility of scripts, weaker version of some lemmas of Zdiv *)
-Theorem rel_prime_mod_rev: forall p q, 0 < q -> rel_prime (p mod q) q -> rel_prime p q.
-intros p q H H0.
-rewrite (Z_div_mod_eq p q); auto with zarith.
-red.
-apply Zis_gcd_sym; apply Zis_gcd_for_euclid2; auto with zarith.
-Qed.
-
-Theorem rel_prime_div: forall p q r, rel_prime p q -> (r | p) -> rel_prime r q.
-intros p q r H (u, H1); subst.
-inversion_clear H as [H1 H2 H3].
-red; apply Zis_gcd_intro; try apply Zone_divide.
-intros x H4 H5; apply H3; auto.
-apply Zdivide_mult_r; auto.
-Qed.
-
-Theorem rel_prime_1: forall n, rel_prime 1 n.
-intros n; red; apply Zis_gcd_intro; auto.
-exists 1; auto with zarith.
-exists n; auto with zarith.
-Qed.
-
-Theorem not_rel_prime_0: forall n, 1 < n -> ~rel_prime 0 n.
-intros n H H1; absurd (n = 1 \/ n = -1).
-intros [H2 | H2]; subst; contradict H; auto with zarith.
-case (Zis_gcd_unique 0 n n 1); auto.
-apply Zis_gcd_intro; auto.
-exists 0; auto with zarith.
-exists 1; auto with zarith.
-Qed.
-
-Theorem rel_prime_mod: forall p q, 0 < q -> rel_prime p q -> rel_prime (p mod q) q.
-intros p q H H0.
-assert (H1: Bezout p q 1).
-apply rel_prime_bezout; auto.
-inversion_clear H1 as [q1 r1 H2].
-apply bezout_rel_prime.
-apply Bezout_intro with q1 (r1 + q1 * (p / q)).
-rewrite <- H2.
-pattern p at 3; rewrite (Z_div_mod_eq p q); try ring; auto with zarith.
-Qed.
-
-Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.
+Lemma Zlt0_not_eq : forall n, 0<n -> n<>0.
Proof.
-intros a b H H1 H2.
-case (not_rel_prime_0 _ H).
-rewrite <- H2.
-apply rel_prime_mod; auto with zarith.
-Qed.
-
-Theorem rel_prime_Zpower_r: forall i p q, 0 < i -> rel_prime p q -> rel_prime p (q^i).
-intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi.
-intros H; contradict H; auto with zarith.
-intros i Hi Rec _; rewrite Zpower_Zsucc; auto.
-apply rel_prime_mult; auto.
-case Zle_lt_or_eq with (1 := Hi); intros Hi1; subst; auto.
-rewrite Zpower_exp_0; apply rel_prime_sym; apply rel_prime_1.
-Qed.
-
-
-(**************************************
- Properties prime
-**************************************)
-
-Theorem not_prime_0: ~ prime 0.
-intros H1; case (prime_divisors _ H1 2); auto with zarith.
-Qed.
-
-
-Theorem not_prime_1: ~ prime 1.
-intros H1; absurd (1 < 1); auto with zarith.
-inversion H1; auto.
-Qed.
-
-Theorem prime_2: prime 2.
-apply prime_intro; auto with zarith.
-intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
- clear H1; intros H1.
-contradict H2; auto with zarith.
-subst n; red; auto with zarith.
-apply Zis_gcd_intro; auto with zarith.
-Qed.
-
-Theorem prime_3: prime 3.
-apply prime_intro; auto with zarith.
-intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
- clear H1; intros H1.
-case (Zle_lt_or_eq 2 n); auto with zarith; clear H1; intros H1.
-contradict H2; auto with zarith.
-subst n; red; auto with zarith.
-apply Zis_gcd_intro; auto with zarith.
-intros x [q1 Hq1] [q2 Hq2].
-exists (q2 - q1).
-apply trans_equal with (3 - 2); auto with zarith.
-rewrite Hq1; rewrite Hq2; ring.
-subst n; red; auto with zarith.
-apply Zis_gcd_intro; auto with zarith.
-Qed.
-
-Theorem prime_le_2: forall p, prime p -> 2 <= p.
-intros p Hp; inversion Hp; auto with zarith.
-Qed.
-
-Definition prime_dec_aux:
- forall p m,
- ({ forall n, 1 < n < m -> rel_prime n p }) +
- ({ exists n , 1 < n < m /\ ~ rel_prime n p }).
-intros p m.
-case (Z_lt_dec 1 m); intros H1.
-apply natlike_rec
- with
- ( P :=
- fun m =>
- ({ forall (n : Z), 1 < n < m -> rel_prime n p }) +
- ({ exists n : Z , 1 < n < m /\ ~ rel_prime n p }) );
auto with zarith.
-left; intros n [HH1 HH2]; contradict HH2; auto with zarith.
-intros x Hx Rec; case Rec.
-intros P1; case (rel_prime_dec x p); intros P2.
-left; intros n [HH1 HH2].
-case (Zgt_succ_gt_or_eq x n); auto with zarith.
-intros HH3; subst x; auto.
-case (Z_lt_dec 1 x); intros HH1.
-right; exists x; split; auto with zarith.
-left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith.
-intros tmp; right; case tmp; intros n [HH1 HH2]; exists n; auto with zarith.
-left; intros n [HH1 HH2]; contradict H1; auto with zarith.
-Defined.
-
-Theorem not_prime_divide:
- forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p) .
-intros p Hp Hp1.
-case (prime_dec_aux p p); intros H1.
-case Hp1; apply prime_intro; auto.
-intros n [Hn1 Hn2].
-case Zle_lt_or_eq with ( 1 := Hn1 ); auto with zarith.
-intros H2; subst n; red; apply Zis_gcd_intro; auto with zarith.
-case H1; intros n [Hn1 Hn2].
-generalize (Zgcd_is_pos n p); intros Hpos.
-case (Zle_lt_or_eq 0 (Zgcd n p)); auto with zarith; intros H3.
-case (Zle_lt_or_eq 1 (Zgcd n p)); auto with zarith; intros H4.
-exists (Zgcd n p); split; auto.
-split; auto.
-apply Zle_lt_trans with n; auto with zarith.
-generalize (Zgcd_is_gcd n p); intros tmp; inversion_clear tmp as [Hr1 Hr2 Hr3].
-case Hr1; intros q Hq.
-case (Zle_or_lt q 0); auto with zarith; intros Ht.
-absurd (n <= 0 * Zgcd n p) ; auto with zarith.
-pattern n at 1; rewrite Hq; auto with zarith.
-apply Zle_trans with (1 * Zgcd n p); auto with zarith.
-pattern n at 2; rewrite Hq; auto with zarith.
-generalize (Zgcd_is_gcd n p); intros Ht; inversion Ht; auto.
-case Hn2; red.
-rewrite H4; apply Zgcd_is_gcd.
-generalize (Zgcd_is_gcd n p); rewrite <- H3; intros tmp;
- inversion_clear tmp as [Hr1 Hr2 Hr3].
-absurd (n = 0); auto with zarith.
-case Hr1; auto with zarith.
-Defined.
-
-Definition prime_dec: forall p, ({ prime p }) + ({ ~ prime p }).
-intros p; case (Z_lt_dec 1 p); intros H1.
-case (prime_dec_aux p p); intros H2.
-left; apply prime_intro; auto.
-intros n [Hn1 Hn2]; case Zle_lt_or_eq with ( 1 := Hn1 ); auto.
-intros HH; subst n.
-red; apply Zis_gcd_intro; auto with zarith.
-right; intros H3; inversion_clear H3 as [Hp1 Hp2].
-case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith.
-right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto.
-Defined.
-
-
-Theorem prime_def:
- forall p, 1 < p -> (forall n, 1 < n < p -> ~ (n | p)) -> prime p.
-intros p H1 H2.
-apply prime_intro; auto.
-intros n H3.
-red; apply Zis_gcd_intro; auto with zarith.
-intros x H4 H5.
-case (Zle_lt_or_eq 0 (Zabs x)); auto with zarith; intros H6.
-case (Zle_lt_or_eq 1 (Zabs x)); auto with zarith; intros H7.
-case (Zle_lt_or_eq (Zabs x) p); auto with zarith.
-apply Zdivide_le; auto with zarith.
-apply Zdivide_Zabs_inv_l; auto.
-intros H8; case (H2 (Zabs x)); auto.
-apply Zdivide_Zabs_inv_l; auto.
-intros H8; subst p; absurd (Zabs x <= n); auto with zarith.
-apply Zdivide_le; auto with zarith.
-apply Zdivide_Zabs_inv_l; auto.
-rewrite H7; pattern (Zabs x); apply Zabs_intro; auto with zarith.
-absurd (0%Z = p); auto with zarith.
-cut (Zdivide (Zabs x) p).
-intros [q Hq]; subst p; rewrite <- H6; auto with zarith.
-apply Zdivide_Zabs_inv_l; auto.
-Qed.
-
-Theorem prime_inv_def: forall p n, prime p -> 1 < n < p -> ~ (n | p).
-intros p n H1 H2 H3.
-absurd (rel_prime n p); auto.
-unfold rel_prime; intros H4.
-case (Zis_gcd_unique n p n 1); auto with zarith.
-apply Zis_gcd_intro; auto with zarith.
-inversion H1; auto with zarith.
-Qed.
-
-Theorem square_not_prime: forall a, ~ prime (a * a).
-intros a; rewrite (Zabs_square a).
-case (Zle_lt_or_eq 0 (Zabs a)); auto with zarith; intros Hza1.
-case (Zle_lt_or_eq 1 (Zabs a)); auto with zarith; intros Hza2.
-intros Ha; case (prime_inv_def (Zabs a * Zabs a) (Zabs a)); auto.
-split; auto.
-pattern (Zabs a) at 1; replace (Zabs a) with (1 * Zabs a); auto with zarith.
-apply Zmult_lt_compat_r; auto with zarith.
-exists (Zabs a); auto.
-rewrite <- Hza2; simpl; apply not_prime_1.
-rewrite <- Hza1; simpl; apply not_prime_0.
Qed.
-Theorem prime_divide_prime_eq:
- forall p1 p2, prime p1 -> prime p2 -> Zdivide p1 p2 -> p1 = p2.
-intros p1 p2 Hp1 Hp2 Hp3.
-assert (Ha: 1 < p1).
-inversion Hp1; auto.
-assert (Ha1: 1 < p2).
-inversion Hp2; auto.
-case (Zle_lt_or_eq p1 p2); auto with zarith.
-apply Zdivide_le; auto with zarith.
-intros Hp4.
-case (prime_inv_def p2 p1); auto with zarith.
-Qed.
-
-Theorem Zdivide_div_prime_le_square: forall x, 1 < x -> ~prime x -> exists p, prime p /\ (p | x) /\ p * p <= x.
-intros x Hx; generalize Hx; pattern x; apply Z_lt_induction; auto with zarith.
-clear x Hx; intros x Rec H H1.
-case (not_prime_divide x); auto.
-intros x1 ((H2, H3), H4); case (prime_dec x1); intros H5.
-case (Zle_or_lt (x1 * x1) x); intros H6.
-exists x1; auto.
-case H4; clear H4; intros x2 H4; subst.
-assert (Hx2: x2 <= x1).
-case (Zle_or_lt x2 x1); auto; intros H8; contradict H6; apply Zle_not_lt.
-apply Zmult_le_compat_r; auto with zarith.
-case (prime_dec x2); intros H7.
-exists x2; repeat (split; auto with zarith).
-apply Zmult_le_compat_l; auto with zarith.
-apply Zle_trans with 2%Z; try apply prime_le_2; auto with zarith.
-case (Zle_or_lt 0 x2); intros H8.
-case Zle_lt_or_eq with (1 := H8); auto with zarith; clear H8; intros H8; subst; auto with zarith.
-case (Zle_lt_or_eq 1 x2); auto with zarith; clear H8; intros H8; subst; auto with zarith.
-case (Rec x2); try split; auto with zarith.
-intros x3 (H9, (H10, H11)).
-exists x3; repeat (split; auto with zarith).
-contradict H; apply Zle_not_lt; auto with zarith.
-apply Zle_trans with (0 * x1); auto with zarith.
-case (Rec x1); try split; auto with zarith.
-intros x3 (H9, (H10, H11)).
-exists x3; repeat (split; auto with zarith).
-apply Zdivide_trans with x1; auto with zarith.
-Qed.
-
-Theorem prime_div_prime: forall p q, prime p -> prime q -> (p | q) -> p = q.
-intros p q H H1 H2;
-assert (Hp: 0 < p); try apply Zlt_le_trans with 2; try apply prime_le_2; auto with zarith.
-assert (Hq: 0 < q); try apply Zlt_le_trans with 2; try apply prime_le_2; auto with zarith.
-case prime_divisors with (2 := H2); auto.
-intros H4; contradict Hp; subst; auto with zarith.
-intros [H4| [H4 | H4]]; subst; auto.
-contradict H; apply not_prime_1.
-contradict Hp; auto with zarith.
-Qed.
-
-Theorem prime_div_Zpower_prime: forall n p q, 0 <= n -> prime p -> prime q -> (p | q ^ n) -> p = q.
-intros n p q Hp Hq; generalize p q Hq; pattern n; apply natlike_ind; auto; clear n p q Hp Hq.
-intros p q Hp Hq; rewrite Zpower_exp_0.
-intros (r, H); subst.
-case (Zmult_interval p r); auto; try rewrite Zmult_comm.
-rewrite <- H; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_le_2; auto with zarith.
-rewrite <- H; intros H1 H2; contradict H2; auto with zarith.
-intros n1 H Rec p q Hp Hq; try rewrite Zpower_Zsucc; auto with zarith; intros H1.
-case prime_mult with (2 := H1); auto.
-intros H2; apply prime_div_prime; auto.
-Qed.
-
-Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j -> rel_prime p q -> rel_prime (p^i) (q^j).
-intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q.
-intros _ j p q H H1; rewrite Zpower_exp_0; apply rel_prime_1.
-intros n Hn Rec _ j p q Hj Hpq.
-rewrite Zpower_Zsucc; auto.
-case Zle_lt_or_eq with (1 := Hj); intros Hj1; subst.
-apply rel_prime_sym; apply rel_prime_mult; auto.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto with arith.
-apply rel_prime_sym; apply Rec; auto.
-rewrite Zpower_exp_0; apply rel_prime_sym; apply rel_prime_1.
-Qed.
-
-Theorem prime_induction: forall (P: Z -> Prop), P 0 -> P 1 -> (forall p q, prime p -> P q -> P (p * q)) -> forall p, 0 <= p -> P p.
-intros P H H1 H2 p Hp.
-generalize Hp; pattern p; apply Z_lt_induction; auto; clear p Hp.
-intros p Rec Hp.
-case Zle_lt_or_eq with (1 := Hp); clear Hp; intros Hp; subst; auto.
-case (Zle_lt_or_eq 1 p); auto with zarith; clear Hp; intros Hp; subst; auto.
-case (prime_dec p); intros H3.
-rewrite <- (Zmult_1_r p); apply H2; auto.
- case (Zdivide_div_prime_le_square p); auto.
-intros q (Hq1, ((q2, Hq2), Hq3)); subst.
-case (Zmult_interval q q2).
-rewrite Zmult_comm; apply Zlt_trans with 1; auto with zarith.
-apply Zlt_le_trans with 2; auto with zarith; apply prime_le_2; auto.
-intros H4 H5; rewrite Zmult_comm; apply H2; auto.
-apply Rec; try split; auto with zarith.
-rewrite Zmult_comm; auto.
-Qed.
-
-Theorem div_power_max: forall p q, 1 < p -> 0 < q -> exists n, 0 <= n /\ (p ^n | q) /\ ~(p ^(1 + n) | q).
-intros p q H1 H2; generalize H2; pattern q; apply Z_lt_induction; auto with zarith; clear q H2.
-intros q Rec H2.
-case (Zdivide_dec p q); intros H3.
-case (Zdivide_Zdiv_lt_pos p q); auto with zarith; intros H4 H5.
-case (Rec (Zdiv q p)); auto with zarith.
-intros n (Ha1, (Ha2, Ha3)); exists (n + 1); split; auto with zarith; split.
-case Ha2; intros q1 Hq; exists q1.
-rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-rewrite Zmult_assoc; rewrite <- Hq.
-rewrite Zmult_comm; apply Zdivide_Zdiv_eq; auto with zarith.
-intros (q1, Hu); case Ha3; exists q1.
-apply Zmult_reg_r with p; auto with zarith.
-rewrite (Zmult_comm (q / p)); rewrite <- Zdivide_Zdiv_eq; auto with zarith.
-apply trans_equal with (1 := Hu); repeat rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-ring.
-exists 0; repeat split; try rewrite Zpower_exp_1; try rewrite Zpower_exp_0; auto with zarith.
-Qed.
-
-Theorem prime_divide_Zpower_Zdiv: forall m a p i, 0 <= i -> prime p -> (m | a) -> ~(m | (a/p)) -> (p^i | a) -> (p^i | m).
-intros m a p i Hi Hp (k, Hk) H (l, Hl); subst.
-case (Zle_lt_or_eq 0 i); auto with arith; intros Hi1; subst.
-assert (Hp0: 0 < p).
-apply Zlt_le_trans with 2; auto with zarith; apply prime_le_2; auto.
-case (Zdivide_dec p k); intros H1.
-case H1; intros k' H2; subst.
-case H; replace (k' * p * m) with ((k' * m) * p); try ring; rewrite Z_div_mult; auto with zarith.
-apply Gauss with k.
-exists l; rewrite Hl; ring.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto.
-apply rel_prime_sym; apply prime_rel_prime; auto.
-rewrite Zpower_exp_0; apply Zone_divide.
-Qed.
-
-
-Theorem Zdivide_Zpower: forall n m, 0 < n -> (forall p i, prime p -> 0 < i -> (p^i | n) -> (p^i | m)) -> (n | m).
-intros n m Hn; generalize m Hn; pattern n; apply prime_induction; auto with zarith; clear n m Hn.
-intros m H1; contradict H1; auto with zarith.
-intros p q H Rec m H1 H2.
-assert (H3: (p | m)).
-rewrite <- (Zpower_exp_1 p); apply H2; auto with zarith; rewrite Zpower_exp_1; apply Zdivide_factor_r.
-case (Zmult_interval p q); auto.
-apply Zlt_le_trans with 2; auto with zarith; apply prime_le_2; auto.
-case H3; intros k Hk; subst.
-intros Hq Hq1.
-rewrite (Zmult_comm k); apply Zmult_divide_compat_l.
-apply Rec; auto.
-intros p1 i Hp1 Hp2 Hp3.
-case (Z_eq_dec p p1); intros Hpp1; subst.
-case (H2 p1 (Zsucc i)); auto with zarith.
-rewrite Zpower_Zsucc; try apply Zmult_divide_compat_l; auto with zarith.
-intros q2 Hq2; exists q2.
-apply Zmult_reg_r with p1.
-contradict H; subst; apply not_prime_0.
-rewrite Hq2; rewrite Zpower_Zsucc; try ring; auto with zarith.
-apply Gauss with p.
-rewrite Zmult_comm; apply H2; auto.
-apply Zdivide_trans with (1:= Hp3).
-apply Zdivide_factor_l.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto.
-apply prime_rel_prime; auto.
-contradict Hpp1; apply prime_divide_prime_eq; auto.
-Qed.
-
-Theorem divide_prime_divide:
- forall a n m, 0 < a -> (n | m) -> (a | m) ->
- (forall p, prime p -> (p | a) -> ~(n | (m/p))) ->
- (a | n).
-intros a n m Ha Hnm Ham Hp.
-apply Zdivide_Zpower; auto.
-intros p i H1 H2 H3.
-apply prime_divide_Zpower_Zdiv with m; auto with zarith.
-apply Hp; auto; apply Zdivide_trans with (2 := H3); auto.
-apply Zpower_divide; auto.
-apply Zdivide_trans with (1 := H3); auto.
-Qed.
-
-Theorem prime_div_induction:
- forall (P: Z -> Prop) n,
- 0 < n ->
- (P 1) ->
- (forall p i, prime p -> 0 <= i -> (p^i | n) -> P (p^i)) ->
- (forall p q, rel_prime p q -> P p -> P q -> P (p * q)) ->
- forall m, 0 <= m -> (m | n) -> P m.
-intros P n P1 Hn H H1 m Hm.
-generalize Hm; pattern m; apply Z_lt_induction; auto; clear m Hm.
-intros m Rec Hm H2.
-case (prime_dec m); intros Hm1.
-rewrite <- Zpower_exp_1; apply H; auto with zarith.
-rewrite Zpower_exp_1; auto.
-case Zle_lt_or_eq with (1 := Hm); clear Hm; intros Hm; subst.
-2: contradict P1; case H2; intros; subst; auto with zarith.
-case (Zle_lt_or_eq 1 m); auto with zarith; clear Hm; intros Hm; subst; auto.
-case Zdivide_div_prime_le_square with m; auto.
-intros p (Hp1, (Hp2, Hp3)).
-case (div_power_max p m); auto with zarith.
-generalize (prime_le_2 p Hp1); auto with zarith.
-intros i (Hi, (Hi1, Hi2)).
-case Zle_lt_or_eq with (1 := Hi); clear Hi; intros Hi.
-assert (Hpi: 0 < p ^ i).
-apply Zpower_lt_0; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_le_2; auto with zarith.
-rewrite (Z_div_exact_2 m (p ^ i)); auto with zarith.
-apply H1; auto with zarith.
-apply rel_prime_sym; apply rel_prime_Zpower_r; auto.
-apply rel_prime_sym.
-apply prime_rel_prime; auto.
-contradict Hi2.
-case Hi1; intros; subst.
-rewrite Z_div_mult in Hi2; auto with zarith.
-case Hi2; intros q0 Hq0; subst.
-exists q0; rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-apply H; auto with zarith.
-apply Zdivide_trans with (1 := Hi1); auto.
-apply Rec; auto with zarith.
-split; auto with zarith.
-apply Zge_le; apply Z_div_ge0; auto with zarith.
-apply Z_div_lt; auto with zarith.
-apply Zle_ge; apply Zle_trans with p.
-apply prime_le_2; auto.
-pattern p at 1; rewrite <- Zpower_exp_1; apply Zpower_le_monotone; auto with zarith.
-apply Zlt_le_trans with 2; try apply prime_le_2; auto with zarith.
-apply Zge_le; apply Z_div_ge0; auto with zarith.
-apply Zdivide_trans with (2 := H2); auto.
-exists (p ^ i); apply Z_div_exact_2; auto with zarith.
-apply Zdivide_mod; auto with zarith.
-apply Zdivide_mod; auto with zarith.
-case Hi2; rewrite <- Hi; rewrite Zplus_0_r; rewrite Zpower_exp_1; auto.
-Qed.
-
-(**************************************
- A tail recursive way of compute a^n
-**************************************)
-
-Fixpoint Zpower_tr_aux (z1 z2: Z) (n: nat) {struct n}: Z :=
- match n with O => z1 | (S n1) => Zpower_tr_aux (z2 * z1) z2 n1 end.
-
-Theorem Zpower_tr_aux_correct:
-forall z1 z2 n p, z1 = Zpower_nat z2 p -> Zpower_tr_aux z1 z2 n = Zpower_nat z2 (p + n).
-intros z1 z2 n; generalize z1; elim n; clear z1 n; simpl; auto.
-intros z1 p; rewrite plus_0_r; auto.
-intros n1 Rec z1 p H1.
-rewrite Rec with (p:= S p).
-rewrite <- plus_n_Sm; simpl; auto.
-pattern z2 at 1; replace z2 with (Zpower_nat z2 1).
-rewrite H1; rewrite <- Zpower_nat_is_exp; simpl; auto.
-unfold Zpower_nat; simpl; rewrite Zmult_1_r; auto.
-Qed.
-
-Definition Zpower_nat_tr := Zpower_tr_aux 1.
-
-Theorem Zpower_nat_tr_correct:
-forall z n, Zpower_nat_tr z n = Zpower_nat z n.
-intros z n; unfold Zpower_nat_tr.
-rewrite Zpower_tr_aux_correct with (p := 0%nat); auto.
-Qed.
-
-
-(**************************************
- Definition of Zsquare
-**************************************)
-
-Fixpoint Psquare (p: positive): positive :=
-match p with
- xH => xH
-| xO p => xO (xO (Psquare p))
-| xI p => xI (xO (Pplus (Psquare p) p))
-end.
-
-Theorem Psquare_correct: (forall p, Psquare p = p * p)%positive.
-intros p; elim p; simpl; auto.
-intros p1 Rec; rewrite Rec.
-eq_tac.
-apply trans_equal with (xO p1 + xO (p1 * p1) )%positive; auto.
-rewrite (Pplus_comm (xO p1)); auto.
-rewrite Pmult_xI_permute_r; rewrite Pplus_assoc.
-eq_tac; auto.
-apply sym_equal; apply Pplus_diag.
-intros p1 Rec; rewrite Rec; simpl; auto.
-eq_tac; auto.
-apply sym_equal; apply Pmult_xO_permute_r.
-Qed.
-
-Definition Zsquare p :=
-match p with Z0 => Z0 | Zpos p => Zpos (Psquare p) | Zneg p => Zpos (Psquare p) end.
-
-Theorem Zsquare_correct: forall p, Zsquare p = p * p.
-intro p; case p; simpl; auto; intros p1; rewrite Psquare_correct; auto.
-Qed.
-
-(**************************************
- Some properties of Zpower
-**************************************)
-
-Theorem prime_power_2: forall x n, 0 <= n -> prime x -> (x | 2 ^ n) -> x = 2.
-intros x n H Hx; pattern n; apply natlike_ind; auto; clear n H.
-rewrite Zpower_exp_0.
-intros H1; absurd (x <= 1).
-apply Zlt_not_le; apply Zlt_le_trans with 2%Z; auto with zarith.
-apply prime_le_2; auto.
-apply Zdivide_le; auto with zarith.
-apply Zle_trans with 2%Z; try apply prime_le_2; auto with zarith.
-intros n1 H H1.
-unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_exp_1; auto with zarith.
-intros H2; case prime_mult with (2 := H2); auto.
-intros H3; case (Zle_lt_or_eq x 2); auto.
-apply Zdivide_le; auto with zarith.
-apply Zle_trans with 2%Z; try apply prime_le_2; auto with zarith.
-intros H4; contradict H4; apply Zle_not_lt.
-apply prime_le_2; auto with zarith.
-Qed.
-
-Theorem Zdivide_power_2: forall x n, 0 <= n -> 0 <= x -> (x | 2 ^ n) -> exists q, x = 2 ^ q.
-intros x n Hn H; generalize n H Hn; pattern x; apply Z_lt_induction; auto; clear x n H Hn.
-intros x Rec n H Hn H1.
-case Zle_lt_or_eq with (1 := H); auto; clear H; intros H; subst.
-case (Zle_lt_or_eq 1 x); auto with zarith; clear H; intros H; subst.
-case (prime_dec x); intros H2.
-exists 1; simpl; apply prime_power_2 with n; auto.
-case not_prime_divide with (2 := H2); auto.
-intros p1 ((H3, H4), (q1, Hq1)); subst.
-case (Rec p1) with n; auto with zarith.
-apply Zdivide_trans with (2 := H1); exists q1; auto with zarith.
-intros r1 Hr1.
-case (Rec q1) with n; auto with zarith.
-case (Zle_lt_or_eq 0 q1).
-apply Zmult_le_0_reg_r with p1; auto with zarith.
-split; auto with zarith.
-pattern q1 at 1; replace q1 with (q1 * 1); auto with zarith.
-apply Zmult_lt_compat_l; auto with zarith.
-intros H5; subst; contradict H; auto with zarith.
-apply Zmult_le_0_reg_r with p1; auto with zarith.
-apply Zdivide_trans with (2 := H1); exists p1; auto with zarith.
-intros r2 Hr2; exists (r2 + r1); subst.
-apply sym_equal; apply Zpower_exp.
-generalize H; case r2; simpl; auto with zarith.
-intros; red; simpl; intros; discriminate.
-generalize H; case r1; simpl; auto with zarith.
-intros; red; simpl; intros; discriminate.
-exists 0; simpl; auto.
-case H1; intros q1; try rewrite Zmult_0_r; intros H2.
-absurd (0 < 0); auto with zarith.
-pattern 0 at 2; rewrite <- H2; auto with zarith.
-apply Zpower_lt_0; auto with zarith.
-Qed.
-
-
-(**************************************
- Some properties of Zodd and Zeven
-**************************************)
-
-Theorem Zeven_ex: forall p, Zeven p -> exists q, p = 2 * q.
-intros p; case p; simpl; auto.
-intros _; exists 0; auto.
-intros p1; case p1; try ((intros H; case H; fail) || intros z H; case H; fail).
-intros p2 _; exists (Zpos p2); auto.
-intros p1; case p1; try ((intros H; case H; fail) || intros z H; case H; fail).
-intros p2 _; exists (Zneg p2); auto.
-Qed.
-
-Theorem Zodd_ex: forall p, Zodd p -> exists q, p = 2 * q + 1.
-intros p HH; case (Zle_or_lt 0 p); intros HH1.
-exists (Zdiv2 p); apply Zodd_div2; auto with zarith.
-exists ((Zdiv2 p) - 1); pattern p at 1; rewrite Zodd_div2_neg; auto with zarith.
-Qed.
-
-Theorem Zeven_2p: forall p, Zeven (2 * p).
-intros p; case p; simpl; auto.
-Qed.
-
-Theorem Zodd_2p_plus_1: forall p, Zodd (2 * p + 1).
-intros p; case p; simpl; auto.
-intros p1; case p1; simpl; auto.
-Qed.
-
-Theorem Zeven_plus_Zodd_Zodd: forall z1 z2, Zeven z1 -> Zodd z2 -> Zodd (z1 + z2).
-intros z1 z2 HH1 HH2; case Zeven_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-case Zodd_ex with (1 := HH2); intros y HH4; try rewrite HH4; auto.
-replace (2 * x + (2 * y + 1)) with (2 * (x + y) + 1); try apply Zodd_2p_plus_1; auto with zarith.
-Qed.
-
-Theorem Zeven_plus_Zeven_Zeven: forall z1 z2, Zeven z1 -> Zeven z2 -> Zeven (z1 + z2).
-intros z1 z2 HH1 HH2; case Zeven_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-case Zeven_ex with (1 := HH2); intros y HH4; try rewrite HH4; auto.
-replace (2 * x + 2 * y) with (2 * (x + y)); try apply Zeven_2p; auto with zarith.
-Qed.
-
-Theorem Zodd_plus_Zeven_Zodd: forall z1 z2, Zodd z1 -> Zeven z2 -> Zodd (z1 + z2).
-intros z1 z2 HH1 HH2; rewrite Zplus_comm; apply Zeven_plus_Zodd_Zodd; auto.
-Qed.
-
-Theorem Zodd_plus_Zodd_Zeven: forall z1 z2, Zodd z1 -> Zodd z2 -> Zeven (z1 + z2).
-intros z1 z2 HH1 HH2; case Zodd_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-case Zodd_ex with (1 := HH2); intros y HH4; try rewrite HH4; auto.
-replace ((2 * x + 1) + (2 * y + 1)) with (2 * (x + y + 1)); try apply Zeven_2p; try ring.
-Qed.
-
-Theorem Zeven_mult_Zeven_l: forall z1 z2, Zeven z1 -> Zeven (z1 * z2).
-intros z1 z2 HH1; case Zeven_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-replace (2 * x * z2) with (2 * (x * z2)); try apply Zeven_2p; auto with zarith.
-Qed.
-
-Theorem Zeven_mult_Zeven_r: forall z1 z2, Zeven z2 -> Zeven (z1 * z2).
-intros z1 z2 HH1; case Zeven_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-replace (z1 * (2 * x)) with (2 * (x * z1)); try apply Zeven_2p; try ring.
-Qed.
-
-Theorem Zodd_mult_Zodd_Zodd: forall z1 z2, Zodd z1 -> Zodd z2 -> Zodd (z1 * z2).
-intros z1 z2 HH1 HH2; case Zodd_ex with (1 := HH1); intros x HH3; try rewrite HH3; auto.
-case Zodd_ex with (1 := HH2); intros y HH4; try rewrite HH4; auto.
-replace ((2 * x + 1) * (2 * y + 1)) with (2 * (2 * x * y + x + y) + 1); try apply Zodd_2p_plus_1; try ring.
-Qed.
-
-Definition Zmult_lt_0_compat := Zmult_lt_O_compat.
-
-Hint Rewrite Zmult_1_r Zmult_0_r Zmult_1_l Zmult_0_l Zplus_0_l Zplus_0_r Zminus_0_r: rm10.
-Hint Rewrite Zmult_plus_distr_r Zmult_plus_distr_l Zmult_minus_distr_r Zmult_minus_distr_l: distr.
-
-Theorem Zmult_lt_compat_bis:
- forall n m p q : Z, 0 <= n < p -> 0 <= m < q -> n * m < p * q.
-intros n m p q (H1, H2) (H3,H4).
-case Zle_lt_or_eq with (1 := H1); intros H5; auto with zarith.
-case Zle_lt_or_eq with (1 := H3); intros H6; auto with zarith.
-apply Zlt_trans with (n * q).
-apply Zmult_lt_compat_l; auto.
-apply Zmult_lt_compat_r; auto with zarith.
-rewrite <- H6; autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith.
-rewrite <- H5; autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith.
-Qed.
-
-
-Theorem nat_of_P_xO:
- forall p, nat_of_P (xO p) = (2 * nat_of_P p)%nat.
-intros p; unfold nat_of_P; simpl; rewrite Pmult_nat_2_mult_2_permute; auto with arith.
-Qed.
-
-Theorem nat_of_P_xI:
- forall p, nat_of_P (xI p) = (2 * nat_of_P p + 1)%nat.
-intros p; unfold nat_of_P; simpl; rewrite Pmult_nat_2_mult_2_permute; auto with arith.
-ring.
-Qed.
-
-Theorem nat_of_P_xH: nat_of_P xH = 1%nat.
-trivial.
-Qed.
-
-Hint Rewrite
- nat_of_P_xO nat_of_P_xI nat_of_P_xH
- nat_of_P_succ_morphism
- nat_of_P_plus_carry_morphism
- nat_of_P_plus_morphism
- nat_of_P_mult_morphism
- nat_of_P_minus_morphism: pos_morph.
-
-Ltac pos_tac :=
- match goal with |- ?X = ?Y =>
- assert (tmp: Zpos X = Zpos Y);
- [idtac; repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P; eq_tac | injection tmp; auto]
- end; autorewrite with pos_morph.
-
-(**************************************
- Bounded induction
-**************************************)
+Definition Zdiv_mult_cancel_r a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H).
+Definition Zdiv_mult_cancel_l a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H).
+Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H).
Theorem Zbounded_induction :
(forall Q : Z -> Prop, forall b : Z,
@@ -1392,4 +322,3 @@ right; auto with zarith.
unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3].
assumption. apply Zle_not_lt in H3. false_hyp H2 H3.
Qed.
-
diff --git a/theories/Ints/Z/ZDivModAux.v b/theories/Ints/Z/ZDivModAux.v
deleted file mode 100644
index 127d3cefa..000000000
--- a/theories/Ints/Z/ZDivModAux.v
+++ /dev/null
@@ -1,479 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
- ZDivModAux.v
-
- Auxillary functions & Theorems for Zdiv and Zmod
- **********************************************************************)
-
-Require Export ZArith.
-Require Export Znumtheory.
-Require Export Tactic.
-Require Import ZAux.
-Require Import ZPowerAux.
-
-Open Local Scope Z_scope.
-
-Hint Extern 2 (Zle _ _) =>
- (match goal with
- |- Zpos _ <= Zpos _ => exact (refl_equal _)
- | H: _ <= ?p |- _ <= ?p => apply Zle_trans with (2 := H)
- | H: _ < ?p |- _ <= ?p =>
- apply Zlt_le_weak; apply Zle_lt_trans with (2 := H)
- end).
-
-Hint Extern 2 (Zlt _ _) =>
- (match goal with
- |- Zpos _ < Zpos _ => exact (refl_equal _)
-| H: _ <= ?p |- _ <= ?p => apply Zlt_le_trans with (2 := H)
-| H: _ < ?p |- _ <= ?p => apply Zle_lt_trans with (2 := H)
- end).
-
-Hint Resolve Zlt_gt Zle_ge: zarith.
-
-(**************************************
- Properties Zmod
-**************************************)
-
- Theorem Zmod_mult:
- forall a b n, 0 < n -> (a * b) mod n = ((a mod n) * (b mod n)) mod n.
- Proof.
- intros a b n H.
- pattern a at 1; rewrite (Z_div_mod_eq a n); auto with zarith.
- pattern b at 1; rewrite (Z_div_mod_eq b n); auto with zarith.
- replace ((n * (a / n) + a mod n) * (n * (b / n) + b mod n)) with
- ((a mod n) * (b mod n) +
- (((n*(a/n)) * (b/n) + (b mod n)*(a / n)) + (a mod n) * (b / n)) * n);
- auto with zarith.
- apply Z_mod_plus; auto with zarith.
- ring.
- Qed.
-
- Theorem Zmod_plus:
- forall a b n, 0 < n -> (a + b) mod n = (a mod n + b mod n) mod n.
- Proof.
- intros a b n H.
- pattern a at 1; rewrite (Z_div_mod_eq a n); auto with zarith.
- pattern b at 1; rewrite (Z_div_mod_eq b n); auto with zarith.
- replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n))
- with ((a mod n + b mod n) + (a / n + b / n) * n); auto with zarith.
- apply Z_mod_plus; auto with zarith.
- ring.
- Qed.
-
- Theorem Zmod_mod: forall a n, 0 < n -> (a mod n) mod n = a mod n.
- Proof.
- intros a n H.
- pattern a at 2; rewrite (Z_div_mod_eq a n); auto with zarith.
- rewrite Zplus_comm; rewrite Zmult_comm.
- apply sym_equal; apply Z_mod_plus; auto with zarith.
- Qed.
-
- Theorem Zmod_def_small: forall a n, 0 <= a < n -> a mod n = a.
- Proof.
- intros a n [H1 H2]; unfold Zmod.
- generalize (Z_div_mod a n); case (Zdiv_eucl a n).
- intros q r H3; case H3; clear H3; auto with zarith.
- intros H4 [H5 H6].
- case (Zle_or_lt q (- 1)); intros H7.
- contradict H1; apply Zlt_not_le.
- subst a.
- apply Zle_lt_trans with (n * - 1 + r); auto with zarith.
- case (Zle_lt_or_eq 0 q); auto with zarith; intros H8.
- contradict H2; apply Zle_not_lt.
- apply Zle_trans with (n * 1 + r); auto with zarith.
- rewrite H4; auto with zarith.
- subst a; subst q; auto with zarith.
- Qed.
-
- Theorem Zmod_minus:
- forall a b n, 0 < n -> (a - b) mod n = (a mod n - b mod n) mod n.
- Proof.
- intros a b n H; replace (a - b) with (a + (-1) * b); auto with zarith.
- replace (a mod n - b mod n) with (a mod n + (-1)*(b mod n));auto with zarith.
- rewrite Zmod_plus; auto with zarith.
- rewrite Zmod_mult; auto with zarith.
- rewrite (fun x y => Zmod_plus x ((-1) * y)); auto with zarith.
- rewrite Zmod_mult; auto with zarith.
- rewrite (fun x => Zmod_mult x (b mod n)); auto with zarith.
- repeat rewrite Zmod_mod; auto.
- Qed.
-
- Theorem Zmod_le: forall a n, 0 < n -> 0 <= a -> (Zmod a n) <= a.
- Proof.
- intros a n H1 H2; case (Zle_or_lt n a); intros H3.
- case (Z_mod_lt a n); auto with zarith.
- rewrite Zmod_def_small; auto with zarith.
- Qed.
-
- Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a.
- Proof.
- intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto.
- case (Zle_or_lt b a); intros H4; auto with zarith.
- rewrite Zmod_def_small; auto with zarith.
- Qed.
-
-
-(**************************************
- Properties of Zdivide
-**************************************)
-
- Theorem Zdiv_pos: forall a b, 0 < b -> 0 <= a -> 0 <= a / b.
- Proof.
- intros; apply Zge_le; apply Z_div_ge0; auto with zarith.
- Qed.
- Hint Resolve Zdiv_pos: zarith.
-
- Theorem Zdiv_mult_le:
- forall a b c, 0 <= a -> 0 < b -> 0 <= c -> c * (a/b) <= (c * a)/ b.
- Proof.
- intros a b c H1 H2 H3.
- case (Z_mod_lt a b); auto with zarith; intros Hu1 Hu2.
- case (Z_mod_lt c b); auto with zarith; intros Hv1 Hv2.
- apply Zmult_le_reg_r with b; auto with zarith.
- rewrite <- Zmult_assoc.
- replace (a / b * b) with (a - a mod b).
- replace (c * a / b * b) with (c * a - (c * a) mod b).
- rewrite Zmult_minus_distr_l.
- unfold Zminus; apply Zplus_le_compat_l.
- match goal with |- - ?X <= -?Y => assert (Y <= X); auto with zarith end.
- apply Zle_trans with ((c mod b) * (a mod b)); auto with zarith.
- rewrite Zmod_mult; case (Zmod_le_first ((c mod b) * (a mod b)) b);
- auto with zarith.
- apply Zmult_le_compat_r; auto with zarith.
- case (Zmod_le_first c b); auto.
- pattern (c * a) at 1; rewrite (Z_div_mod_eq (c * a) b); try ring;
- auto with zarith.
- pattern a at 1; rewrite (Z_div_mod_eq a b); try ring; auto with zarith.
- Qed.
-
- Theorem Zdiv_unique:
- forall n d q r, 0 < d -> ( 0 <= r < d ) -> n = d * q + r -> q = n / d.
- Proof.
- intros n d q r H H0 H1.
- assert (H2: n = d * (n / d) + n mod d).
- apply Z_div_mod_eq; auto with zarith.
- assert (H3: 0 <= n mod d < d ).
- apply Z_mod_lt; auto with zarith.
- case (Ztrichotomy q (n / d)); auto.
- intros H4.
- absurd (n < n); auto with zarith.
- pattern n at 1; rewrite H1; rewrite H2.
- apply Zlt_le_trans with (d * (q + 1)); auto with zarith.
- rewrite Zmult_plus_distr_r; auto with zarith.
- apply Zle_trans with (d * (n / d)); auto with zarith.
- intros tmp; case tmp; auto; intros H4; clear tmp.
- absurd (n < n); auto with zarith.
- pattern n at 2; rewrite H1; rewrite H2.
- apply Zlt_le_trans with (d * (n / d + 1)); auto with zarith.
- rewrite Zmult_plus_distr_r; auto with zarith.
- apply Zle_trans with (d * q); auto with zarith.
- Qed.
-
- Theorem Zmod_unique:
- forall n d q r, 0 < d -> ( 0 <= r < d ) -> n = d * q + r -> r = n mod d.
- Proof.
- intros n d q r H H0 H1.
- assert (H2: n = d * (n / d) + n mod d).
- apply Z_div_mod_eq; auto with zarith.
- rewrite (Zdiv_unique n d q r) in H1; auto.
- apply (Zplus_reg_l (d * (n / d))); auto with zarith.
- Qed.
-
- Theorem Zmod_Zmult_compat_l: forall a b c,
- 0 < b -> 0 < c -> c * a mod (c * b) = c * (a mod b).
- Proof.
- intros a b c H2 H3.
- pattern a at 1; rewrite (Z_div_mod_eq a b); auto with zarith.
- rewrite Zplus_comm; rewrite Zmult_plus_distr_r.
- rewrite Zmult_assoc; rewrite (Zmult_comm (c * b)).
- rewrite Z_mod_plus; auto with zarith.
- apply Zmod_def_small; split; auto with zarith.
- apply Zmult_le_0_compat; auto with zarith.
- destruct (Z_mod_lt a b);auto with zarith.
- apply Zmult_lt_compat_l; auto with zarith.
- destruct (Z_mod_lt a b);auto with zarith.
- Qed.
-
- Theorem Zdiv_Zmult_compat_l:
- forall a b c, 0 <= a -> 0 < b -> 0 < c -> c * a / (c * b) = a / b.
- Proof.
- intros a b c H1 H2 H3; case (Z_mod_lt a b); auto with zarith; intros H4 H5.
- apply Zdiv_unique with (a mod b); auto with zarith.
- apply Zmult_reg_l with c; auto with zarith.
- rewrite Zmult_plus_distr_r; rewrite <- Zmod_Zmult_compat_l; auto with zarith.
- rewrite Zmult_assoc; apply Z_div_mod_eq; auto with zarith.
- Qed.
-
- Theorem Zdiv_0_l: forall a, 0 / a = 0.
- Proof.
- intros a; case a; auto.
- Qed.
-
- Theorem Zdiv_0_r: forall a, a / 0 = 0.
- Proof.
- intros a; case a; auto.
- Qed.
-
- Theorem Zmod_0_l: forall a, 0 mod a = 0.
- Proof.
- intros a; case a; auto.
- Qed.
-
- Theorem Zmod_0_r: forall a, a mod 0 = 0.
- Proof.
- intros a; case a; auto.
- Qed.
-
- Theorem Zdiv_le_upper_bound:
- forall a b q, 0 <= a -> 0 < b -> a <= q * b -> a / b <= q.
- Proof.
- intros a b q H1 H2 H3.
- apply Zmult_le_reg_r with b; auto with zarith.
- apply Zle_trans with (2 := H3).
- pattern a at 2; rewrite (Z_div_mod_eq a b); auto with zarith.
- rewrite (Zmult_comm b); case (Z_mod_lt a b); auto with zarith.
- Qed.
-
- Theorem Zdiv_lt_upper_bound:
- forall a b q, 0 <= a -> 0 < b -> a < q * b -> a / b < q.
- Proof.
- intros a b q H1 H2 H3.
- apply Zmult_lt_reg_r with b; auto with zarith.
- apply Zle_lt_trans with (2 := H3).
- pattern a at 2; rewrite (Z_div_mod_eq a b); auto with zarith.
- rewrite (Zmult_comm b); case (Z_mod_lt a b); auto with zarith.
- Qed.
-
- Theorem Zdiv_le_lower_bound:
- forall a b q, 0 <= a -> 0 < b -> q * b <= a -> q <= a / b.
- Proof.
- intros a b q H1 H2 H3.
- assert (q < a / b + 1); auto with zarith.
- apply Zmult_lt_reg_r with b; auto with zarith.
- apply Zle_lt_trans with (1 := H3).
- pattern a at 1; rewrite (Z_div_mod_eq a b); auto with zarith.
- rewrite Zmult_plus_distr_l; rewrite (Zmult_comm b); case (Z_mod_lt a b);
- auto with zarith.
- Qed.
-
- Theorem Zmult_mod_distr_l:
- forall a b c, 0 < a -> 0 < c -> (a * b) mod (a * c) = a * (b mod c).
- Proof.
- intros a b c H Hc.
- apply sym_equal; apply Zmod_unique with (b / c); auto with zarith.
- apply Zmult_lt_0_compat; auto.
- case (Z_mod_lt b c); auto with zarith; intros; split; auto with zarith.
- apply Zmult_lt_compat_l; auto.
- rewrite <- Zmult_assoc; rewrite <- Zmult_plus_distr_r.
- rewrite <- Z_div_mod_eq; auto with zarith.
- Qed.
-
-
- Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
- (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t.
- Proof.
- intros a b r t (H1, H2) H3 (H4, H5).
- assert (t < 2 ^ b).
- apply Zlt_le_trans with (1:= H5); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- rewrite Zmod_plus; auto with zarith.
- rewrite Zmod_def_small with (a := t); auto with zarith.
- apply Zmod_def_small; auto with zarith.
- split; auto with zarith.
- assert (0 <= 2 ^a * r); auto with zarith.
- apply Zplus_le_0_compat; auto with zarith.
- match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
- auto with zarith.
- pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a);
- try ring.
- apply Zplus_le_lt_compat; auto with zarith.
- replace b with ((b - a) + a); try ring.
- rewrite Zpower_exp; auto with zarith.
- pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
- try rewrite <- Zmult_minus_distr_r.
- rewrite (Zmult_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l;
- auto with zarith.
- rewrite (Zmult_comm (2 ^a)); apply Zmult_le_compat_r; auto with zarith.
- match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
- auto with zarith.
- Qed.
-
- Theorem Zmult_mod_distr_r:
- forall a b c : Z, 0 < a -> 0 < c -> (b * a) mod (c * a) = (b mod c) * a.
- Proof.
- intros; repeat rewrite (fun x => (Zmult_comm x a)).
- apply Zmult_mod_distr_l; auto.
- Qed.
-
- Theorem Z_div_plus_l: forall a b c : Z, 0 < b -> (a * b + c) / b = a + c / b.
- Proof.
- intros a b c H; rewrite Zplus_comm; rewrite Z_div_plus;
- try apply Zplus_comm; auto with zarith.
- Qed.
-
- Theorem Zmod_shift_r:
- forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
- (r * 2 ^a + t) mod (2 ^ b) = (r * 2 ^a) mod (2 ^ b) + t.
- Proof.
- intros a b r t (H1, H2) H3 (H4, H5).
- assert (t < 2 ^ b).
- apply Zlt_le_trans with (1:= H5); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- rewrite Zmod_plus; auto with zarith.
- rewrite Zmod_def_small with (a := t); auto with zarith.
- apply Zmod_def_small; auto with zarith.
- split; auto with zarith.
- assert (0 <= 2 ^a * r); auto with zarith.
- apply Zplus_le_0_compat; auto with zarith.
- match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
- auto with zarith.
- pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring.
- apply Zplus_le_lt_compat; auto with zarith.
- replace b with ((b - a) + a); try ring.
- rewrite Zpower_exp; auto with zarith.
- pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
- try rewrite <- Zmult_minus_distr_r.
- repeat rewrite (fun x => Zmult_comm x (2 ^ a)); rewrite Zmult_mod_distr_l;
- auto with zarith.
- apply Zmult_le_compat_l; auto with zarith.
- match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
- auto with zarith.
- Qed.
-
- Theorem Zdiv_lt_0: forall a b, 0 <= a < b -> a / b = 0.
- intros a b H; apply sym_equal; apply Zdiv_unique with a; auto with zarith.
- Qed.
-
- Theorem Zmod_mult_0: forall a b, 0 < b -> (a * b) mod b = 0.
- Proof.
- intros a b H; rewrite <- (Zplus_0_l (a * b)); rewrite Z_mod_plus;
- auto with zarith.
- Qed.
-
- Theorem Zdiv_shift_r:
- forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
- (r * 2 ^a + t) / (2 ^ b) = (r * 2 ^a) / (2 ^ b).
- Proof.
- intros a b r t (H1, H2) H3 (H4, H5).
- assert (Eq: t < 2 ^ b); auto with zarith.
- apply Zlt_le_trans with (1 := H5); auto with zarith.
- apply Zpower_le_monotone; auto with zarith.
- pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b);
- auto with zarith.
- rewrite <- Zplus_assoc.
- rewrite <- Zmod_shift_r; auto with zarith.
- rewrite (Zmult_comm (2 ^ b)); rewrite Z_div_plus_l; auto with zarith.
- rewrite (fun x y => @Zdiv_lt_0 (x mod y)); auto with zarith.
- match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
- auto with zarith.
- Qed.
-
-
- Theorem Zpos_minus:
- forall a b, Zpos a < Zpos b -> Zpos (b- a) = Zpos b - Zpos a.
- Proof.
- intros a b H.
- repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P; autorewrite with pos_morph;
- auto with zarith.
- rewrite inj_minus1; auto with zarith.
- match goal with |- (?X <= ?Y)%nat =>
- case (le_or_lt X Y); auto; intro tmp; absurd (Z_of_nat X < Z_of_nat Y);
- try apply Zle_not_lt; auto with zarith
- end.
- repeat rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
- generalize (Zlt_gt _ _ H); auto.
- Qed.
-
- Theorem Zdiv_Zmult_compat_r:
- forall a b c : Z, 0 <= a -> 0 < b -> 0 < c -> a * c / (b * c) = a / b.
- Proof.
- intros a b c H H1 H2; repeat rewrite (fun x => Zmult_comm x c);
- apply Zdiv_Zmult_compat_l; auto.
- Qed.
-
-
- Lemma shift_unshift_mod : forall n p a,
- 0 <= a < 2^n ->
- 0 <= p <= n ->
- a * 2^p = a / 2^(n - p) * 2^n + (a*2^p) mod 2^n.
- Proof.
- intros n p a H1 H2.
- pattern (a*2^p) at 1;replace (a*2^p) with
- (a*2^p/2^n * 2^n + a*2^p mod 2^n).
- 2:symmetry;rewrite (Zmult_comm (a*2^p/2^n));apply Z_div_mod_eq.
- replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial.
- replace (2^n) with (2^(n-p)*2^p).
- symmetry;apply Zdiv_Zmult_compat_r.
- destruct H1;trivial.
- apply Zpower_lt_0;auto with zarith.
- apply Zpower_lt_0;auto with zarith.
- rewrite <- Zpower_exp.
- replace (n-p+p) with n;trivial. ring.
- omega. omega.
- apply Zlt_gt. apply Zpower_lt_0;auto with zarith.
- Qed.
-
- Lemma Zdiv_Zdiv : forall a b c, 0 < b -> 0 < c -> (a/b)/c = a / (b*c).
- Proof.
- intros a b c H H0.
- pattern a at 2;rewrite (Z_div_mod_eq a b);auto with zarith.
- pattern (a/b) at 2;rewrite (Z_div_mod_eq (a/b) c);auto with zarith.
- replace (b * (c * (a / b / c) + (a / b) mod c) + a mod b) with
- ((a / b / c)*(b * c) + (b * ((a / b) mod c) + a mod b));try ring.
- rewrite Z_div_plus_l;auto with zarith.
- rewrite (Zdiv_lt_0 (b * ((a / b) mod c) + a mod b)).
- ring.
- split.
- apply Zplus_le_0_compat;auto with zarith.
- apply Zmult_le_0_compat;auto with zarith.
- destruct (Z_mod_lt (a/b) c);auto with zarith.
- destruct (Z_mod_lt a b);auto with zarith.
- apply Zle_lt_trans with (b * ((a / b) mod c) + (b-1)).
- destruct (Z_mod_lt a b);auto with zarith.
- apply Zle_lt_trans with (b * (c-1) + (b - 1)).
- apply Zplus_le_compat;auto with zarith.
- destruct (Z_mod_lt (a/b) c);auto with zarith.
- replace (b * (c - 1) + (b - 1)) with (b*c-1);try ring;auto with zarith.
- apply Zmult_lt_0_compat;auto with zarith.
- Qed.
-
- Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p.
- Proof.
- intros p x Hle;destruct (Z_le_gt_dec 0 p).
- apply Zdiv_le_lower_bound;auto with zarith.
- replace (2^p) with 0.
- destruct x;compute;intro;discriminate.
- destruct p;trivial;discriminate z.
- Qed.
-
- Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y.
- Proof.
- intros p x y H;destruct (Z_le_gt_dec 0 p).
- apply Zdiv_lt_upper_bound;auto with zarith.
- apply Zlt_le_trans with y;auto with zarith.
- rewrite <- (Zmult_1_r y);apply Zmult_le_compat;auto with zarith.
- assert (0 < 2^p);auto with zarith.
- replace (2^p) with 0.
- destruct x;change (0<y);auto with zarith.
- destruct p;trivial;discriminate z.
- Qed.
-
-
- Theorem Zgcd_div_pos a b:
- (0 < b)%Z -> (0 < Zgcd a b)%Z -> (0 < b / Zgcd a b)%Z.
- intros a b Ha Hg.
- case (Zle_lt_or_eq 0 (b/Zgcd a b)); auto.
- apply Zdiv_pos; auto with zarith.
- intros H; generalize Ha.
- pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
- rewrite <- H; auto with zarith.
- assert (F := (Zgcd_is_gcd a b)); inversion F; auto.
- Qed.
-
diff --git a/theories/Ints/Z/ZPowerAux.v b/theories/Ints/Z/ZPowerAux.v
deleted file mode 100644
index 151b9a73a..000000000
--- a/theories/Ints/Z/ZPowerAux.v
+++ /dev/null
@@ -1,203 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(**********************************************************************
-
-
- ZPowerAux.v Auxillary functions & Theorems for Zpower
- **********************************************************************)
-
-Require Export ZArith.
-Require Export Znumtheory.
-Require Export Tactic.
-
-Open Local Scope Z_scope.
-
-Hint Extern 2 (Zle _ _) =>
- (match goal with
- |- Zpos _ <= Zpos _ => exact (refl_equal _)
-| H: _ <= ?p |- _ <= ?p => apply Zle_trans with (2 := H)
-| H: _ < ?p |- _ <= ?p => apply Zlt_le_weak; apply Zle_lt_trans with (2 := H)
- end).
-
-Hint Extern 2 (Zlt _ _) =>
- (match goal with
- |- Zpos _ < Zpos _ => exact (refl_equal _)
-| H: _ <= ?p |- _ <= ?p => apply Zlt_le_trans with (2 := H)
-| H: _ < ?p |- _ <= ?p => apply Zle_lt_trans with (2 := H)
- end).
-
-Hint Resolve Zlt_gt Zle_ge: zarith.
-
-(**************************************
- Properties Zpower
-**************************************)
-
-Theorem Zpower_1: forall a, 0 <= a -> 1 ^ a = 1.
-intros a Ha; pattern a; apply natlike_ind; auto with zarith.
-intros x Hx Hx1; unfold Zsucc.
-rewrite Zpower_exp; auto with zarith.
-rewrite Hx1; simpl; auto.
-Qed.
-
-Theorem Zpower_exp_0: forall a, a ^ 0 = 1.
-simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
-
-Theorem Zpower_exp_1: forall a, a ^ 1 = a.
-simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
-
-Theorem Zpower_Zabs: forall a b, Zabs (a ^ b) = (Zabs a) ^ b.
-intros a b; case (Zle_or_lt 0 b).
-intros Hb; pattern b; apply natlike_ind; auto with zarith.
-intros x Hx Hx1; unfold Zsucc.
-(repeat rewrite Zpower_exp); auto with zarith.
-rewrite Zabs_Zmult; rewrite Hx1.
-eq_tac; auto.
-replace (a ^ 1) with a; auto.
-simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
-simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
-case b; simpl; auto with zarith.
-intros p Hp; discriminate.
-Qed.
-
-Theorem Zpower_Zsucc: forall p n, 0 <= n -> p ^Zsucc n = p * p ^ n.
-intros p n H.
-unfold Zsucc; rewrite Zpower_exp; auto with zarith.
-rewrite Zpower_exp_1; apply Zmult_comm.
-Qed.
-
-Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p ^ (q * r) = (p ^ q) ^
- r.
-intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
-intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto.
-intros r1 H3 H4 H5.
-unfold Zsucc; rewrite Zpower_exp; auto with zarith.
-rewrite <- H4; try rewrite Zpower_exp_1; try rewrite <- Zpower_exp; try eq_tac;
-auto with zarith.
-ring.
-Qed.
-
-Theorem Zpower_lt_0: forall a b: Z, 0 < a -> 0 <= b-> 0 < a ^b.
-intros a b; case b; auto with zarith.
-simpl; intros; auto with zarith.
-2: intros p H H1; case H1; auto.
-intros p H1 H; generalize H; pattern (Zpos p); apply natlike_ind; auto.
-intros; case a; compute; auto.
-intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
-apply Zmult_lt_O_compat; auto with zarith.
-generalize H1; case a; compute; intros; auto; discriminate.
-Qed.
-
-Theorem Zpower_le_monotone: forall a b c: Z, 0 < a -> 0 <= b <= c -> a ^ b <= a ^ c.
-intros a b c H (H1, H2).
-rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-apply Zmult_le_compat_l; auto with zarith.
-assert (0 < a ^ (c - b)); auto with zarith.
-apply Zpower_lt_0; auto with zarith.
-apply Zlt_le_weak; apply Zpower_lt_0; auto with zarith.
-Qed.
-
-
-Theorem Zpower_le_0: forall a b: Z, 0 <= a -> 0 <= a ^b.
-intros a b; case b; auto with zarith.
-simpl; auto with zarith.
-intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
-generalize H; pattern (Zpos p); apply natlike_ind; auto.
-intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
-apply Zmult_le_0_compat; auto with zarith.
-generalize H1; case a; compute; intros; auto; discriminate.
-Qed.
-
-Hint Resolve Zpower_le_0 Zpower_lt_0: zarith.
-
-Theorem Zpower_prod: forall p q r, 0 <= q -> 0 <= r -> (p * q) ^ r = p ^ r * q ^ r.
-intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
-intros r1 H3 H4 H5.
-unfold Zsucc; rewrite Zpower_exp; auto with zarith.
-rewrite H4; repeat (rewrite Zpower_exp_1 || rewrite Zpower_exp); auto with zarith; ring.
-Qed.
-
-Theorem Zpower_le_monotone_exp: forall a b c: Z, 0 <= c -> 0 <= a <= b -> a ^ c <= b ^ c.
-intros a b c H (H1, H2).
-generalize H; pattern c; apply natlike_ind; auto.
-intros x HH HH1 _; unfold Zsucc; repeat rewrite Zpower_exp; auto with zarith.
-repeat rewrite Zpower_exp_1.
-apply Zle_trans with (a ^x * b); auto with zarith.
-Qed.
-
-Theorem Zpower_lt_monotone: forall a b c: Z, 1 < a -> 0 <= b < c -> a ^ b < a ^
- c.
-intros a b c H (H1, H2).
-rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-apply Zmult_lt_compat_l; auto with zarith.
-assert (0 < a ^ (c - b)); auto with zarith.
-apply Zlt_le_trans with (a ^1); auto with zarith.
-rewrite Zpower_exp_1; auto with zarith.
-apply Zpower_le_monotone; auto with zarith.
-Qed.
-
-Lemma Zpower_le_monotone_inv :
- forall a b c, 1 < a -> 0 < b -> a^b <= a^c -> b <= c.
-Proof.
- intros a b c H H0 H1.
- destruct (Z_le_gt_dec b c);trivial.
- assert (2 <= a^b).
- apply Zle_trans with (2^b).
- pattern 2 at 1;replace 2 with (2^1);trivial.
- apply Zpower_le_monotone;auto with zarith.
- apply Zpower_le_monotone_exp;auto with zarith.
- assert (c > 0).
- destruct (Z_le_gt_dec 0 c);trivial.
- destruct (Zle_lt_or_eq _ _ z0);auto with zarith.
- rewrite <- H3 in H1;simpl in H1; elimtype False;omega.
- destruct c;try discriminate z0. simpl in H1. elimtype False;omega.
- assert (H4 := Zpower_lt_monotone a c b H). elimtype False;omega.
-Qed.
-
-
-Theorem Zpower_le_monotone2:
- forall a b c: Z, 0 < a -> b <= c -> a ^ b <= a ^ c.
-intros a b c H H2.
-destruct (Z_le_gt_dec 0 b).
-rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
-rewrite Zpower_exp; auto with zarith.
-apply Zmult_le_compat_l; auto with zarith.
-assert (0 < a ^ (c - b)); auto with zarith.
-replace (a^b) with 0.
-destruct (Z_le_gt_dec 0 c).
-destruct (Zle_lt_or_eq _ _ z0).
-apply Zlt_le_weak;apply Zpower_lt_0;trivial.
-rewrite <- H0;simpl;auto with zarith.
-replace (a^c) with 0. auto with zarith.
-destruct c;trivial;unfold Zgt in z0;discriminate z0.
-destruct b;trivial;unfold Zgt in z;discriminate z.
-Qed.
-
-Theorem Zpower2_lt_lin: forall n,
- 0 <= n -> n < 2 ^ n.
-intros n; apply (natlike_ind (fun n => n < 2 ^n)); clear n.
- simpl; auto with zarith.
-intros n H1 H2; unfold Zsucc.
-case (Zle_lt_or_eq _ _ H1); clear H1; intros H1.
- apply Zle_lt_trans with (n + n); auto with zarith.
- rewrite Zpower_exp; auto with zarith.
- rewrite Zpower_exp_1.
- assert (tmp: forall p, p * 2 = p + p); intros; try ring;
- rewrite tmp; auto with zarith.
-subst n; simpl; unfold Zpower_pos; simpl; auto with zarith.
-Qed.
-
-Theorem Zpower2_le_lin: forall n,
- 0 <= n -> n <= 2 ^ n.
-intros; apply Zlt_le_weak.
-apply Zpower2_lt_lin; auto.
-Qed.
diff --git a/theories/Ints/Z/ZSum.v b/theories/Ints/Z/ZSum.v
deleted file mode 100644
index bcde7386c..000000000
--- a/theories/Ints/Z/ZSum.v
+++ /dev/null
@@ -1,321 +0,0 @@
-
-(*************************************************************)
-(* This file is distributed under the terms of the *)
-(* GNU Lesser General Public License Version 2.1 *)
-(*************************************************************)
-(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
-(*************************************************************)
-
-(***********************************************************************
- Summation.v from Z to Z
- *********************************************************************)
-Require Import Arith.
-Require Import ArithRing.
-Require Import ListAux.
-Require Import ZArith.
-Require Import ZAux.
-Require Import Iterator.
-Require Import ZProgression.
-
-
-Open Scope Z_scope.
-(* Iterated Sum *)
-
-Definition Zsum :=
- fun n m f =>
- if Zle_bool n m
- then iter 0 f Zplus (progression Zsucc n (Zabs_nat ((1 + m) - n)))
- else iter 0 f Zplus (progression Zpred n (Zabs_nat ((1 + n) - m))).
-Hint Unfold Zsum .
-
-Lemma Zsum_nn: forall n f, Zsum n n f = f n.
-intros n f; unfold Zsum; rewrite Zle_bool_refl.
-replace ((1 + n) - n) with 1; auto with zarith.
-simpl; ring.
-Qed.
-
-Theorem permutation_rev: forall (A:Set) (l : list A), permutation (rev l) l.
-intros a l; elim l; simpl; auto.
-intros a1 l1 Hl1.
-apply permutation_trans with (cons a1 (rev l1)); auto.
-change (permutation (rev l1 ++ (a1 :: nil)) (app (cons a1 nil) (rev l1))); auto.
-Qed.
-
-Lemma Zsum_swap: forall (n m : Z) (f : Z -> Z), Zsum n m f = Zsum m n f.
-intros n m f; unfold Zsum.
-generalize (Zle_cases n m) (Zle_cases m n); case (Zle_bool n m);
- case (Zle_bool m n); auto with arith.
-intros; replace n with m; auto with zarith.
-3:intros H1 H2; contradict H2; auto with zarith.
-intros H1 H2; apply iter_permutation; auto with zarith.
-apply permutation_trans
- with (rev (progression Zsucc n (Zabs_nat ((1 + m) - n)))).
-apply permutation_sym; apply permutation_rev.
-rewrite Zprogression_opp; auto with zarith.
-replace (n + Z_of_nat (pred (Zabs_nat ((1 + m) - n)))) with m; auto.
-replace (Zabs_nat ((1 + m) - n)) with (S (Zabs_nat (m - n))); auto with zarith.
-simpl.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-replace ((1 + m) - n) with (1 + (m - n)); auto with zarith.
-cut (0 <= m - n); auto with zarith; unfold Zabs_nat.
-case (m - n); auto with zarith.
-intros p; case p; simpl; auto with zarith.
-intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
- rewrite nat_of_P_succ_morphism.
-simpl; repeat rewrite plus_0_r.
-repeat rewrite <- plus_n_Sm; simpl; auto.
-intros p H3; contradict H3; auto with zarith.
-intros H1 H2; apply iter_permutation; auto with zarith.
-apply permutation_trans
- with (rev (progression Zsucc m (Zabs_nat ((1 + n) - m)))).
-rewrite Zprogression_opp; auto with zarith.
-replace (m + Z_of_nat (pred (Zabs_nat ((1 + n) - m)))) with n; auto.
-replace (Zabs_nat ((1 + n) - m)) with (S (Zabs_nat (n - m))); auto with zarith.
-simpl.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-replace ((1 + n) - m) with (1 + (n - m)); auto with zarith.
-cut (0 <= n - m); auto with zarith; unfold Zabs_nat.
-case (n - m); auto with zarith.
-intros p; case p; simpl; auto with zarith.
-intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
- rewrite nat_of_P_succ_morphism.
-simpl; repeat rewrite plus_0_r.
-repeat rewrite <- plus_n_Sm; simpl; auto.
-intros p H3; contradict H3; auto with zarith.
-apply permutation_rev.
-Qed.
-
-Lemma Zsum_split_up:
- forall (n m p : Z) (f : Z -> Z),
- ( n <= m < p ) -> Zsum n p f = Zsum n m f + Zsum (m + 1) p f.
-intros n m p f [H H0].
-case (Zle_lt_or_eq _ _ H); clear H; intros H.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-assert (H1: n < p).
-apply Zlt_trans with ( 1 := H ); auto with zarith.
-assert (H2: m < 1 + p).
-apply Zlt_trans with ( 1 := H0 ); auto with zarith.
-assert (H3: n < 1 + m).
-apply Zlt_trans with ( 1 := H ); auto with zarith.
-assert (H4: n < 1 + p).
-apply Zlt_trans with ( 1 := H1 ); auto with zarith.
-replace (Zabs_nat ((1 + p) - (m + 1)))
- with (minus (Zabs_nat ((1 + p) - n)) (Zabs_nat ((1 + m) - n))).
-apply iter_progression_app; auto with zarith.
-apply inj_le_inv.
-(repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-rewrite next_n_Z; auto with zarith.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-apply inj_eq_inv; auto with zarith.
-rewrite inj_minus1; auto with zarith.
-(repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-apply inj_le_inv.
-(repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-subst m.
-rewrite Zsum_nn; auto with zarith.
-unfold Zsum; generalize (Zle_cases n p); generalize (Zle_cases (n + 1) p);
- case (Zle_bool n p); case (Zle_bool (n + 1) p); auto with zarith.
-intros H1 H2.
-replace (Zabs_nat ((1 + p) - n)) with (S (Zabs_nat (p - n))); auto with zarith.
-replace (n + 1) with (Zsucc n); auto with zarith.
-replace ((1 + p) - Zsucc n) with (p - n); auto with zarith.
-apply inj_eq_inv; auto with zarith.
-rewrite inj_S; (repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-Qed.
-
-Lemma Zsum_S_left:
- forall (n m : Z) (f : Z -> Z), n < m -> Zsum n m f = f n + Zsum (n + 1) m f.
-intros n m f H; rewrite (Zsum_split_up n n m f); auto with zarith.
-rewrite Zsum_nn; auto with zarith.
-Qed.
-
-Lemma Zsum_S_right:
- forall (n m : Z) (f : Z -> Z),
- n <= m -> Zsum n (m + 1) f = Zsum n m f + f (m + 1).
-intros n m f H; rewrite (Zsum_split_up n m (m + 1) f); auto with zarith.
-rewrite Zsum_nn; auto with zarith.
-Qed.
-
-Lemma Zsum_split_down:
- forall (n m p : Z) (f : Z -> Z),
- ( p < m <= n ) -> Zsum n p f = Zsum n m f + Zsum (m - 1) p f.
-intros n m p f [H H0].
-case (Zle_lt_or_eq p (m - 1)); auto with zarith; intros H1.
-pattern m at 1; replace m with ((m - 1) + 1); auto with zarith.
-repeat rewrite (Zsum_swap n).
-rewrite (Zsum_swap (m - 1)).
-rewrite Zplus_comm.
-apply Zsum_split_up; auto with zarith.
-subst p.
-repeat rewrite (Zsum_swap n).
-rewrite Zsum_nn.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-replace (Zabs_nat ((1 + n) - (m - 1))) with (S (Zabs_nat (n - (m - 1)))).
-rewrite Zplus_comm.
-replace (Zabs_nat ((1 + n) - m)) with (Zabs_nat (n - (m - 1))); auto with zarith.
-pattern m at 4; replace m with (Zsucc (m - 1)); auto with zarith.
-apply f_equal with ( f := Zabs_nat ); auto with zarith.
-apply inj_eq_inv; auto with zarith.
-rewrite inj_S.
-(repeat rewrite Z_of_nat_Zabs_nat); auto with zarith.
-Qed.
-
-
-Lemma Zsum_ext:
- forall (n m : Z) (f g : Z -> Z),
- n <= m ->
- (forall (x : Z), ( n <= x <= m ) -> f x = g x) -> Zsum n m f = Zsum n m g.
-intros n m f g HH H.
-unfold Zsum; auto.
-unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
-apply iter_ext; auto with zarith.
-intros a H1; apply H; auto; split.
-apply Zprogression_le_init with ( 1 := H1 ).
-cut (a < Zsucc m); auto with zarith.
-replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-Lemma Zsum_add:
- forall (n m : Z) (f g : Z -> Z),
- Zsum n m f + Zsum n m g = Zsum n m (fun (i : Z) => f i + g i).
-intros n m f g; unfold Zsum; case (Zle_bool n m); apply iter_comp;
- auto with zarith.
-Qed.
-
-Lemma Zsum_times:
- forall n m x f, x * Zsum n m f = Zsum n m (fun i=> x * f i).
-intros n m x f.
-unfold Zsum. case (Zle_bool n m); intros; apply iter_comp_const with (k := (fun y : Z => x * y)); auto with zarith.
-Qed.
-
-Lemma inv_Zsum:
- forall (P : Z -> Prop) (n m : Z) (f : Z -> Z),
- n <= m ->
- P 0 ->
- (forall (a b : Z), P a -> P b -> P (a + b)) ->
- (forall (x : Z), ( n <= x <= m ) -> P (f x)) -> P (Zsum n m f).
-intros P n m f HH H H0 H1.
-unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith; apply iter_inv; auto.
-intros x H3; apply H1; auto; split.
-apply Zprogression_le_init with ( 1 := H3 ).
-cut (x < Zsucc m); auto with zarith.
-replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-
-Lemma Zsum_pred:
- forall (n m : Z) (f : Z -> Z),
- Zsum n m f = Zsum (n + 1) (m + 1) (fun (i : Z) => f (Zpred i)).
-intros n m f.
-unfold Zsum.
-generalize (Zle_cases n m); generalize (Zle_cases (n + 1) (m + 1));
- case (Zle_bool n m); case (Zle_bool (n + 1) (m + 1)); auto with zarith.
-replace ((1 + (m + 1)) - (n + 1)) with ((1 + m) - n); auto with zarith.
-intros H1 H2; cut (exists c , c = Zabs_nat ((1 + m) - n) ).
-intros [c H3]; rewrite <- H3.
-generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
-intros c H n; simpl; eq_tac; auto with zarith.
-eq_tac; unfold Zpred; auto with zarith.
-replace (Zsucc (n + 1)) with (Zsucc n + 1); auto with zarith.
-exists (Zabs_nat ((1 + m) - n)); auto.
-replace ((1 + (n + 1)) - (m + 1)) with ((1 + n) - m); auto with zarith.
-intros H1 H2; cut (exists c , c = Zabs_nat ((1 + n) - m) ).
-intros [c H3]; rewrite <- H3.
-generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
-intros c H n; simpl; (eq_tac; auto with zarith).
-eq_tac; unfold Zpred; auto with zarith.
-replace (Zpred (n + 1)) with (Zpred n + 1); auto with zarith.
-unfold Zpred; auto with zarith.
-exists (Zabs_nat ((1 + n) - m)); auto.
-Qed.
-
-Theorem Zsum_c:
- forall (c p q : Z), p <= q -> Zsum p q (fun x => c) = ((1 + q) - p) * c.
-intros c p q Hq; unfold Zsum.
-rewrite Zle_imp_le_bool; auto with zarith.
-pattern ((1 + q) - p) at 2; rewrite <- Z_of_nat_Zabs_nat; auto with zarith.
-cut (exists r , r = Zabs_nat ((1 + q) - p) );
- [intros [r H1]; rewrite <- H1 | exists (Zabs_nat ((1 + q) - p))]; auto.
-generalize p; elim r; auto with zarith.
-intros n H p0; replace (Z_of_nat (S n)) with (Z_of_nat n + 1); auto with zarith.
-simpl; rewrite H; ring.
-rewrite inj_S; auto with zarith.
-Qed.
-
-Theorem Zsum_Zsum_f:
- forall (i j k l : Z) (f : Z -> Z -> Z),
- i <= j ->
- k < l ->
- Zsum i j (fun x => Zsum k (l + 1) (fun y => f x y)) =
- Zsum i j (fun x => Zsum k l (fun y => f x y) + f x (l + 1)).
-intros; apply Zsum_ext; intros; auto with zarith.
-rewrite Zsum_S_right; auto with zarith.
-Qed.
-
-Theorem Zsum_com:
- forall (i j k l : Z) (f : Z -> Z -> Z),
- Zsum i j (fun x => Zsum k l (fun y => f x y)) =
- Zsum k l (fun y => Zsum i j (fun x => f x y)).
-intros; unfold Zsum; case (Zle_bool i j); case (Zle_bool k l); apply iter_com;
- auto with zarith.
-Qed.
-
-Theorem Zsum_le:
- forall (n m : Z) (f g : Z -> Z),
- n <= m ->
- (forall (x : Z), ( n <= x <= m ) -> (f x <= g x )) ->
- (Zsum n m f <= Zsum n m g ).
-intros n m f g Hl H.
-unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
-unfold Zsum;
- cut
- (forall x,
- In x (progression Zsucc n (Zabs_nat ((1 + m) - n))) -> ( f x <= g x )).
-elim (progression Zsucc n (Zabs_nat ((1 + m) - n))); simpl; auto with zarith.
-intros x H1; apply H; split.
-apply Zprogression_le_init with ( 1 := H1 ); auto.
-cut (x < m + 1); auto with zarith.
-replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end; auto with zarith.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-Theorem iter_le:
-forall (f g: Z -> Z) l, (forall a, In a l -> f a <= g a) ->
- iter 0 f Zplus l <= iter 0 g Zplus l.
-intros f g l; elim l; simpl; auto with zarith.
-Qed.
-
-Theorem Zsum_lt:
- forall n m f g,
- (forall x, n <= x -> x <= m -> f x <= g x) ->
- (exists x, n <= x /\ x <= m /\ f x < g x) ->
- Zsum n m f < Zsum n m g.
-intros n m f g H (d, (Hd1, (Hd2, Hd3))); unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
-cut (In d (progression Zsucc n (Zabs_nat (1 + m - n)))).
-cut (forall x, In x (progression Zsucc n (Zabs_nat (1 + m - n)))-> f x <= g x).
-elim (progression Zsucc n (Zabs_nat (1 + m - n))); simpl; auto with zarith.
-intros a l Rec H0 [H1 | H1]; subst; auto.
-apply Zle_lt_trans with (f d + iter 0 g Zplus l); auto with zarith.
-apply Zplus_le_compat_l.
-apply iter_le; auto.
-apply Zlt_le_trans with (f a + iter 0 g Zplus l); auto with zarith.
-intros x H1; apply H.
-apply Zprogression_le_init with ( 1 := H1 ); auto.
-cut (x < m + 1); auto with zarith.
-replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
-apply Zprogression_le_end with ( 1 := H1 ); auto with arith.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-apply in_Zprogression.
-rewrite Z_of_nat_Zabs_nat; auto with zarith.
-Qed.
-
-Theorem Zsum_minus:
- forall n m f g, Zsum n m f - Zsum n m g = Zsum n m (fun x => f x - g x).
-intros n m f g; apply trans_equal with (Zsum n m f + (-1) * Zsum n m g); auto with zarith.
-rewrite Zsum_times; rewrite Zsum_add; auto with zarith.
-Qed.