aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init/Wf.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Wf.v')
-rwxr-xr-xtheories/Init/Wf.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
index 78432dcf4..745af5ef6 100755
--- a/theories/Init/Wf.v
+++ b/theories/Init/Wf.v
@@ -59,13 +59,13 @@ Chapter Well_founded.
(P:A->Type)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
Proof.
Intros; Apply (Acc_rect P); Auto.
- Save.
+ Qed.
Theorem well_founded_induction :
(P:A->Set)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
Proof.
Exact [P:A->Set](well_founded_induction_type P).
- Save.
+ Qed.
Theorem well_founded_ind :
(P:A->Prop)((x:A)((y:A)(R y x)->(P y))->(P x))->(a:A)(P a).
@@ -98,13 +98,13 @@ Lemma Fix_F_eq
: (x:A)(r:(Acc x))
(F x [y:A][p:(R y x)](Fix_F y (Acc_inv x r y p)))=(Fix_F x r).
Intros x r; Elim r using Acc_inv_dep; Auto.
-Save.
+Qed.
Lemma Fix_F_inv : (x:A)(r,s:(Acc x))(Fix_F x r)=(Fix_F x s).
Intro x; Elim (Rwf x); Intros.
Case (Fix_F_eq x0 r); Case (Fix_F_eq x0 s); Intros.
Apply F_ext; Auto.
-Save.
+Qed.
Lemma fix_eq : (x:A)(fix x)=(F x [y:A][p:(R y x)](fix y)).
@@ -112,7 +112,7 @@ Intro; Unfold fix.
Case (Fix_F_eq x).
Apply F_ext; Intros.
Apply Fix_F_inv.
-Save.
+Qed.
End FixPoint.