aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/Init/Tauto.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Tauto.v')
-rw-r--r--theories/Init/Tauto.v101
1 files changed, 101 insertions, 0 deletions
diff --git a/theories/Init/Tauto.v b/theories/Init/Tauto.v
new file mode 100644
index 000000000..1e409607a
--- /dev/null
+++ b/theories/Init/Tauto.v
@@ -0,0 +1,101 @@
+Require Import Notations.
+Require Import Datatypes.
+Require Import Logic.
+
+Local Declare ML Module "tauto".
+
+Local Ltac not_dep_intros :=
+ repeat match goal with
+ | |- (forall (_: ?X1), ?X2) => intro
+ | |- (Coq.Init.Logic.not _) => unfold Coq.Init.Logic.not at 1; intro
+ end.
+
+Local Ltac axioms flags :=
+ match reverse goal with
+ | |- ?X1 => is_unit_or_eq flags X1; constructor 1
+ | _:?X1 |- _ => is_empty flags X1; elimtype X1; assumption
+ | _:?X1 |- ?X1 => assumption
+ end.
+
+Local Ltac simplif flags :=
+ not_dep_intros;
+ repeat
+ (match reverse goal with
+ | id: ?X1 |- _ => is_conj flags X1; elim id; do 2 intro; clear id
+ | id: (Coq.Init.Logic.iff _ _) |- _ => elim id; do 2 intro; clear id
+ | id: (Coq.Init.Logic.not _) |- _ => red in id
+ | id: ?X1 |- _ => is_disj flags X1; elim id; intro; clear id
+ | id0: (forall (_: ?X1), ?X2), id1: ?X1|- _ =>
+ (* generalize (id0 id1); intro; clear id0 does not work
+ (see Marco Maggiesi's bug PR#301)
+ so we instead use Assert and exact. *)
+ assert X2; [exact (id0 id1) | clear id0]
+ | id: forall (_ : ?X1), ?X2|- _ =>
+ is_unit_or_eq flags X1; cut X2;
+ [ intro; clear id
+ | (* id : forall (_: ?X1), ?X2 |- ?X2 *)
+ cut X1; [exact id| constructor 1; fail]
+ ]
+ | id: forall (_ : ?X1), ?X2|- _ =>
+ flatten_contravariant_conj flags X1 X2 id
+ (* moved from "id:(?A/\?B)->?X2|-" to "?A->?B->?X2|-" *)
+ | id: forall (_: Coq.Init.Logic.iff ?X1 ?X2), ?X3|- _ =>
+ assert (forall (_: forall _:X1, X2), forall (_: forall _: X2, X1), X3)
+ by (do 2 intro; apply id; split; assumption);
+ clear id
+ | id: forall (_:?X1), ?X2|- _ =>
+ flatten_contravariant_disj flags X1 X2 id
+ (* moved from "id:(?A\/?B)->?X2|-" to "?A->?X2,?B->?X2|-" *)
+ | |- ?X1 => is_conj flags X1; split
+ | |- (Coq.Init.Logic.iff _ _) => split
+ | |- (Coq.Init.Logic.not _) => red
+ end;
+ not_dep_intros).
+
+Local Ltac tauto_intuit flags t_reduce t_solver :=
+ let rec t_tauto_intuit :=
+ (simplif flags; axioms flags
+ || match reverse goal with
+ | id:forall(_: forall (_: ?X1), ?X2), ?X3|- _ =>
+ cut X3;
+ [ intro; clear id; t_tauto_intuit
+ | cut (forall (_: X1), X2);
+ [ exact id
+ | generalize (fun y:X2 => id (fun x:X1 => y)); intro; clear id;
+ solve [ t_tauto_intuit ]]]
+ | id:forall (_:not ?X1), ?X3|- _ =>
+ cut X3;
+ [ intro; clear id; t_tauto_intuit
+ | cut (not X1); [ exact id | clear id; intro; solve [t_tauto_intuit ]]]
+ | |- ?X1 =>
+ is_disj flags X1; solve [left;t_tauto_intuit | right;t_tauto_intuit]
+ end
+ ||
+ (* NB: [|- _ -> _] matches any product *)
+ match goal with | |- forall (_ : _), _ => intro; t_tauto_intuit
+ | |- _ => t_reduce;t_solver
+ end
+ ||
+ t_solver
+ ) in t_tauto_intuit.
+
+Local Ltac intuition_gen flags solver := tauto_intuit flags reduction_not_iff solver.
+Local Ltac tauto_intuitionistic flags := intuition_gen flags fail || fail "tauto failed".
+Local Ltac tauto_classical flags :=
+ (apply_nnpp || fail "tauto failed"); (tauto_intuitionistic flags || fail "Classical tauto failed").
+Local Ltac tauto_gen flags := tauto_intuitionistic flags || tauto_classical flags.
+
+Ltac tauto := with_uniform_flags ltac:(fun flags => tauto_gen flags).
+Ltac dtauto := with_power_flags ltac:(fun flags => tauto_gen flags).
+
+Ltac intuition := with_uniform_flags ltac:(fun flags => intuition_gen flags ltac:(auto with *)).
+Local Ltac intuition_then tac := with_uniform_flags ltac:(fun flags => intuition_gen flags tac).
+
+Ltac dintuition := with_power_flags ltac:(fun flags => intuition_gen flags ltac:(auto with *)).
+Local Ltac dintuition_then tac := with_power_flags ltac:(fun flags => intuition_gen flags tac).
+
+Tactic Notation "intuition" := intuition.
+Tactic Notation "intuition" tactic(t) := intuition_then t.
+
+Tactic Notation "dintuition" := dintuition.
+Tactic Notation "dintuition" tactic(t) := dintuition_then t.