diff options
Diffstat (limited to 'theories/Init/Tauto.v')
-rw-r--r-- | theories/Init/Tauto.v | 101 |
1 files changed, 101 insertions, 0 deletions
diff --git a/theories/Init/Tauto.v b/theories/Init/Tauto.v new file mode 100644 index 000000000..1e409607a --- /dev/null +++ b/theories/Init/Tauto.v @@ -0,0 +1,101 @@ +Require Import Notations. +Require Import Datatypes. +Require Import Logic. + +Local Declare ML Module "tauto". + +Local Ltac not_dep_intros := + repeat match goal with + | |- (forall (_: ?X1), ?X2) => intro + | |- (Coq.Init.Logic.not _) => unfold Coq.Init.Logic.not at 1; intro + end. + +Local Ltac axioms flags := + match reverse goal with + | |- ?X1 => is_unit_or_eq flags X1; constructor 1 + | _:?X1 |- _ => is_empty flags X1; elimtype X1; assumption + | _:?X1 |- ?X1 => assumption + end. + +Local Ltac simplif flags := + not_dep_intros; + repeat + (match reverse goal with + | id: ?X1 |- _ => is_conj flags X1; elim id; do 2 intro; clear id + | id: (Coq.Init.Logic.iff _ _) |- _ => elim id; do 2 intro; clear id + | id: (Coq.Init.Logic.not _) |- _ => red in id + | id: ?X1 |- _ => is_disj flags X1; elim id; intro; clear id + | id0: (forall (_: ?X1), ?X2), id1: ?X1|- _ => + (* generalize (id0 id1); intro; clear id0 does not work + (see Marco Maggiesi's bug PR#301) + so we instead use Assert and exact. *) + assert X2; [exact (id0 id1) | clear id0] + | id: forall (_ : ?X1), ?X2|- _ => + is_unit_or_eq flags X1; cut X2; + [ intro; clear id + | (* id : forall (_: ?X1), ?X2 |- ?X2 *) + cut X1; [exact id| constructor 1; fail] + ] + | id: forall (_ : ?X1), ?X2|- _ => + flatten_contravariant_conj flags X1 X2 id + (* moved from "id:(?A/\?B)->?X2|-" to "?A->?B->?X2|-" *) + | id: forall (_: Coq.Init.Logic.iff ?X1 ?X2), ?X3|- _ => + assert (forall (_: forall _:X1, X2), forall (_: forall _: X2, X1), X3) + by (do 2 intro; apply id; split; assumption); + clear id + | id: forall (_:?X1), ?X2|- _ => + flatten_contravariant_disj flags X1 X2 id + (* moved from "id:(?A\/?B)->?X2|-" to "?A->?X2,?B->?X2|-" *) + | |- ?X1 => is_conj flags X1; split + | |- (Coq.Init.Logic.iff _ _) => split + | |- (Coq.Init.Logic.not _) => red + end; + not_dep_intros). + +Local Ltac tauto_intuit flags t_reduce t_solver := + let rec t_tauto_intuit := + (simplif flags; axioms flags + || match reverse goal with + | id:forall(_: forall (_: ?X1), ?X2), ?X3|- _ => + cut X3; + [ intro; clear id; t_tauto_intuit + | cut (forall (_: X1), X2); + [ exact id + | generalize (fun y:X2 => id (fun x:X1 => y)); intro; clear id; + solve [ t_tauto_intuit ]]] + | id:forall (_:not ?X1), ?X3|- _ => + cut X3; + [ intro; clear id; t_tauto_intuit + | cut (not X1); [ exact id | clear id; intro; solve [t_tauto_intuit ]]] + | |- ?X1 => + is_disj flags X1; solve [left;t_tauto_intuit | right;t_tauto_intuit] + end + || + (* NB: [|- _ -> _] matches any product *) + match goal with | |- forall (_ : _), _ => intro; t_tauto_intuit + | |- _ => t_reduce;t_solver + end + || + t_solver + ) in t_tauto_intuit. + +Local Ltac intuition_gen flags solver := tauto_intuit flags reduction_not_iff solver. +Local Ltac tauto_intuitionistic flags := intuition_gen flags fail || fail "tauto failed". +Local Ltac tauto_classical flags := + (apply_nnpp || fail "tauto failed"); (tauto_intuitionistic flags || fail "Classical tauto failed"). +Local Ltac tauto_gen flags := tauto_intuitionistic flags || tauto_classical flags. + +Ltac tauto := with_uniform_flags ltac:(fun flags => tauto_gen flags). +Ltac dtauto := with_power_flags ltac:(fun flags => tauto_gen flags). + +Ltac intuition := with_uniform_flags ltac:(fun flags => intuition_gen flags ltac:(auto with *)). +Local Ltac intuition_then tac := with_uniform_flags ltac:(fun flags => intuition_gen flags tac). + +Ltac dintuition := with_power_flags ltac:(fun flags => intuition_gen flags ltac:(auto with *)). +Local Ltac dintuition_then tac := with_power_flags ltac:(fun flags => intuition_gen flags tac). + +Tactic Notation "intuition" := intuition. +Tactic Notation "intuition" tactic(t) := intuition_then t. + +Tactic Notation "dintuition" := dintuition. +Tactic Notation "dintuition" tactic(t) := dintuition_then t. |