diff options
Diffstat (limited to 'theories/FSets/FSetAVL.v')
-rw-r--r-- | theories/FSets/FSetAVL.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/theories/FSets/FSetAVL.v b/theories/FSets/FSetAVL.v index 5c701c005..3a08b0f4f 100644 --- a/theories/FSets/FSetAVL.v +++ b/theories/FSets/FSetAVL.v @@ -34,7 +34,7 @@ Definition elt := X.t. Notation "s #1" := (fst s) (at level 9, format "s '#1'"). Notation "s #2" := (snd s) (at level 9, format "s '#2'"). -Lemma distr_pair : forall (A B:Set)(s:A*B)(a:A)(b:B), s = (a,b) -> +Lemma distr_pair : forall (A B:Type)(s:A*B)(a:A)(b:B), s = (a,b) -> s#1 = a /\ s#2 = b. Proof. destruct s; simpl; injection 1; auto. @@ -45,7 +45,7 @@ Qed. The fourth field of [Node] is the height of the tree *) -Inductive tree : Set := +Inductive tree := | Leaf : tree | Node : tree -> X.t -> tree -> int -> tree. @@ -2092,7 +2092,7 @@ Qed. (** ** Enumeration of the elements of a tree *) -Inductive enumeration : Set := +Inductive enumeration := | End : enumeration | More : elt -> tree -> enumeration -> enumeration. @@ -2360,7 +2360,7 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X. Module E := X. Module Raw := Raw I X. - Record bbst : Set := Bbst {this :> Raw.t; is_bst : Raw.bst this; is_avl: Raw.avl this}. + Record bbst := Bbst {this :> Raw.t; is_bst : Raw.bst this; is_avl: Raw.avl this}. Definition t := bbst. Definition elt := E.t. |