aboutsummaryrefslogtreecommitdiffhomepage
path: root/theories/FSets/FMapList.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapList.v')
-rw-r--r--theories/FSets/FMapList.v4
1 files changed, 4 insertions, 0 deletions
diff --git a/theories/FSets/FMapList.v b/theories/FSets/FMapList.v
index dfe842730..63144afe7 100644
--- a/theories/FSets/FMapList.v
+++ b/theories/FSets/FMapList.v
@@ -1063,6 +1063,7 @@ Section Elt.
Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_sorted f m.(sorted) m'.(sorted)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
+ Definition cardinal m := length m.(this).
Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
Definition equal cmp m m' : bool := @Raw.equal elt cmp m.(this) m'.(this).
@@ -1119,6 +1120,9 @@ Section Elt.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(sorted)). Qed.
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intros; reflexivity. Qed.
+
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed.