diff options
Diffstat (limited to 'theories/Arith/PeanoNat.v')
-rw-r--r-- | theories/Arith/PeanoNat.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/theories/Arith/PeanoNat.v b/theories/Arith/PeanoNat.v index 4e4938a99..bc58995fd 100644 --- a/theories/Arith/PeanoNat.v +++ b/theories/Arith/PeanoNat.v @@ -315,7 +315,7 @@ Import Private_Parity. Lemma even_spec : forall n, even n = true <-> Even n. Proof. - fix 1. + fix even_spec 1. destruct n as [|[|n]]; simpl. - split; [ now exists 0 | trivial ]. - split; [ discriminate | intro H; elim (Even_1 H) ]. @@ -325,7 +325,7 @@ Qed. Lemma odd_spec : forall n, odd n = true <-> Odd n. Proof. unfold odd. - fix 1. + fix odd_spec 1. destruct n as [|[|n]]; simpl. - split; [ discriminate | intro H; elim (Odd_0 H) ]. - split; [ now exists 0 | trivial ]. @@ -473,7 +473,7 @@ Notation "( x | y )" := (divide x y) (at level 0) : nat_scope. Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b). Proof. - fix 1. + fix gcd_divide 1. intros [|a] b; simpl. split. now exists 0. @@ -502,7 +502,7 @@ Qed. Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b). Proof. - fix 1. + fix gcd_greatest 1. intros [|a] b; simpl; auto. fold (b mod (S a)). intros c H H'. apply gcd_greatest; auto. @@ -536,7 +536,7 @@ Qed. Lemma le_div2 n : div2 (S n) <= n. Proof. revert n. - fix 1. + fix le_div2 1. destruct n; simpl; trivial. apply lt_succ_r. destruct n; [simpl|]; trivial. now constructor. Qed. |