aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success')
-rw-r--r--test-suite/success/abstract_chain.v43
-rw-r--r--test-suite/success/change_pattern.v34
-rw-r--r--test-suite/success/decl_mode.v182
-rw-r--r--test-suite/success/decl_mode2.v249
-rw-r--r--test-suite/success/old_typeclass.v13
-rw-r--r--test-suite/success/rewrite_evar.v8
6 files changed, 98 insertions, 431 deletions
diff --git a/test-suite/success/abstract_chain.v b/test-suite/success/abstract_chain.v
new file mode 100644
index 000000000..0ff61e87f
--- /dev/null
+++ b/test-suite/success/abstract_chain.v
@@ -0,0 +1,43 @@
+Lemma foo1 : nat -> True.
+Proof.
+intros _.
+assert (H : True -> True).
+{ abstract (exact (fun x => x)) using bar. }
+assert (H' : True).
+{ abstract (exact (bar I)) using qux. }
+exact H'.
+Qed.
+
+Lemma foo2 : True.
+Proof.
+assert (H : True -> True).
+{ abstract (exact (fun x => x)) using bar. }
+assert (H' : True).
+{ abstract (exact (bar I)) using qux. }
+assert (H'' : True).
+{ abstract (exact (bar qux)) using quz. }
+exact H''.
+Qed.
+
+Set Universe Polymorphism.
+
+Lemma foo3 : nat -> True.
+Proof.
+intros _.
+assert (H : True -> True).
+{ abstract (exact (fun x => x)) using bar. }
+assert (H' : True).
+{ abstract (exact (bar I)) using qux. }
+exact H'.
+Qed.
+
+Lemma foo4 : True.
+Proof.
+assert (H : True -> True).
+{ abstract (exact (fun x => x)) using bar. }
+assert (H' : True).
+{ abstract (exact (bar I)) using qux. }
+assert (H'' : True).
+{ abstract (exact (bar qux)) using quz. }
+exact H''.
+Qed.
diff --git a/test-suite/success/change_pattern.v b/test-suite/success/change_pattern.v
new file mode 100644
index 000000000..874abf49f
--- /dev/null
+++ b/test-suite/success/change_pattern.v
@@ -0,0 +1,34 @@
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Axiom vector : Type -> nat -> Type.
+
+Record KleeneStore i j a := kleeneStore
+ { dim : nat
+ ; peek : vector j dim -> a
+ ; pos : vector i dim
+ }.
+
+Definition KSmap i j a b (f : a -> b) (s : KleeneStore i j a) : KleeneStore i j b :=
+ kleeneStore (fun v => f (peek v)) (pos s).
+
+Record KleeneCoalg (i o : Type -> Type) := kleeneCoalg
+ { coalg :> forall a b, (o a) -> KleeneStore (i a) (i b) (o b) }.
+
+Axiom free_b_dim : forall i o (k : KleeneCoalg i o) a b b' (x : o a), dim (coalg k b x) = dim (coalg k b' x).
+Axiom t : Type -> Type.
+Axiom traverse : KleeneCoalg (fun x => x) t.
+
+Definition size a (x:t a) : nat := dim (traverse a a x).
+
+Lemma iso1_iso2_2 a (y : {x : t unit & vector a (size x)}) : False.
+Proof.
+destruct y.
+pose (X := KSmap (traverse a unit) (traverse unit a x)).
+set (e :=(eq_sym (free_b_dim traverse (a:=unit) a unit x))).
+clearbody e.
+(** The pattern generated by change must have holes where there were implicit
+ arguments in the original user-provided term. This particular example fails
+ if this is not the case because the inferred argument does not coincide with
+ the one in the considered term. *)
+progress (change (dim (traverse unit a x)) with (dim X) in e).
diff --git a/test-suite/success/decl_mode.v b/test-suite/success/decl_mode.v
deleted file mode 100644
index e569bcb49..000000000
--- a/test-suite/success/decl_mode.v
+++ /dev/null
@@ -1,182 +0,0 @@
-(* \sqrt 2 is irrationnal, (c) 2006 Pierre Corbineau *)
-
-Set Firstorder Depth 1.
-Require Import ArithRing Wf_nat Peano_dec Div2 Even Lt.
-
-Lemma double_div2: forall n, div2 (double n) = n.
-proof.
- assume n:nat.
- per induction on n.
- suppose it is 0.
- suffices (0=0) to show thesis.
- thus thesis.
- suppose it is (S m) and Hrec:thesis for m.
- have (div2 (double (S m))= div2 (S (S (double m)))).
- ~= (S (div2 (double m))).
- thus ~= (S m) by Hrec.
- end induction.
-end proof.
-Show Script.
-Qed.
-
-Lemma double_inv : forall n m, double n = double m -> n = m .
-proof.
- let n, m be such that H:(double n = double m).
-have (n = div2 (double n)) by double_div2,H.
- ~= (div2 (double m)) by H.
- thus ~= m by double_div2.
-end proof.
-Qed.
-
-Lemma double_mult_l : forall n m, (double (n * m)=n * double m).
-proof.
- assume n:nat and m:nat.
- have (double (n * m) = n*m + n * m).
- ~= (n * (m+m)) by * using ring.
- thus ~= (n * double m).
-end proof.
-Qed.
-
-Lemma double_mult_r : forall n m, (double (n * m)=double n * m).
-proof.
- assume n:nat and m:nat.
- have (double (n * m) = n*m + n * m).
- ~= ((n + n) * m) by * using ring.
- thus ~= (double n * m).
-end proof.
-Qed.
-
-Lemma even_is_even_times_even: forall n, even (n*n) -> even n.
-proof.
- let n be such that H:(even (n*n)).
- per cases of (even n \/ odd n) by even_or_odd.
- suppose (odd n).
- hence thesis by H,even_mult_inv_r.
- end cases.
-end proof.
-Qed.
-
-Lemma main_thm_aux: forall n,even n ->
-double (double (div2 n *div2 n))=n*n.
-proof.
- given n such that H:(even n).
- *** have (double (double (div2 n * div2 n))
- = double (div2 n) * double (div2 n))
- by double_mult_l,double_mult_r.
- thus ~= (n*n) by H,even_double.
-end proof.
-Qed.
-
-Require Import Omega.
-
-Lemma even_double_n: (forall m, even (double m)).
-proof.
- assume m:nat.
- per induction on m.
- suppose it is 0.
- thus thesis.
- suppose it is (S mm) and thesis for mm.
- then H:(even (S (S (mm+mm)))).
- have (S (S (mm + mm)) = S mm + S mm) using omega.
- hence (even (S mm +S mm)) by H.
- end induction.
-end proof.
-Qed.
-
-Theorem main_theorem: forall n p, n*n=double (p*p) -> p=0.
-proof.
- assume n0:nat.
- define P n as (forall p, n*n=double (p*p) -> p=0).
- claim rec_step: (forall n, (forall m,m<n-> P m) -> P n).
- let n be such that H:(forall m : nat, m < n -> P m) and p:nat .
- per cases of ({n=0}+{n<>0}) by eq_nat_dec.
- suppose H1:(n=0).
- per cases on p.
- suppose it is (S p').
- assume (n * n = double (S p' * S p')).
- =~ 0 by H1,mult_n_O.
- ~= (S ( p' + p' * S p' + S p'* S p'))
- by plus_n_Sm.
- hence thesis .
- suppose it is 0.
- thus thesis.
- end cases.
- suppose H1:(n<>0).
- assume H0:(n*n=double (p*p)).
- have (even (double (p*p))) by even_double_n .
- then (even (n*n)) by H0.
- then H2:(even n) by even_is_even_times_even.
- then (double (double (div2 n *div2 n))=n*n)
- by main_thm_aux.
- ~= (double (p*p)) by H0.
- then H':(double (div2 n *div2 n)= p*p) by double_inv.
- have (even (double (div2 n *div2 n))) by even_double_n.
- then (even (p*p)) by even_double_n,H'.
- then H3:(even p) by even_is_even_times_even.
- have (double(double (div2 n * div2 n)) = n*n)
- by H2,main_thm_aux.
- ~= (double (p*p)) by H0.
- ~= (double(double (double (div2 p * div2 p))))
- by H3,main_thm_aux.
- then H'':(div2 n * div2 n = double (div2 p * div2 p))
- by double_inv.
- then (div2 n < n) by lt_div2,neq_O_lt,H1.
- then H4:(div2 p=0) by (H (div2 n)),H''.
- then (double (div2 p) = double 0).
- =~ p by even_double,H3.
- thus ~= 0.
- end cases.
- end claim.
- hence thesis by (lt_wf_ind n0 P).
-end proof.
-Qed.
-
-Require Import Reals Field.
-(*Coercion INR: nat >->R.
-Coercion IZR: Z >->R.*)
-
-Open Scope R_scope.
-
-Lemma square_abs_square:
- forall p,(INR (Z.abs_nat p) * INR (Z.abs_nat p)) = (IZR p * IZR p).
-proof.
- assume p:Z.
- per cases on p.
- suppose it is (0%Z).
- thus thesis.
- suppose it is (Zpos z).
- thus thesis.
- suppose it is (Zneg z).
- have ((INR (Z.abs_nat (Zneg z)) * INR (Z.abs_nat (Zneg z))) =
- (IZR (Zpos z) * IZR (Zpos z))).
- ~= ((- IZR (Zpos z)) * (- IZR (Zpos z))).
- thus ~= (IZR (Zneg z) * IZR (Zneg z)).
- end cases.
-end proof.
-Admitted.
-
-Definition irrational (x:R):Prop :=
- forall (p:Z) (q:nat),q<>0%nat -> x<> (IZR p/INR q).
-
-Theorem irrationnal_sqrt_2: irrational (sqrt (INR 2%nat)).
-proof.
- let p:Z,q:nat be such that H:(q<>0%nat)
- and H0:(sqrt (INR 2%nat)=(IZR p/INR q)).
- have H_in_R:(INR q<>0:>R) by H.
- have triv:((IZR p/INR q* INR q) =IZR p :>R) by * using field.
- have sqrt2:((sqrt (INR 2%nat) * sqrt (INR 2%nat))= INR 2%nat:>R) by sqrt_def.
- have (INR (Z.abs_nat p * Z.abs_nat p)
- = (INR (Z.abs_nat p) * INR (Z.abs_nat p)))
- by mult_INR.
- ~= (IZR p* IZR p) by square_abs_square.
- ~= ((IZR p/INR q*INR q)*(IZR p/INR q*INR q)) by triv. (* we have to factor because field is too weak *)
- ~= ((IZR p/INR q)*(IZR p/INR q)*(INR q*INR q)) using ring.
- ~= (sqrt (INR 2%nat) * sqrt (INR 2%nat)*(INR q*INR q)) by H0.
- ~= (INR (2%nat * (q*q))) by sqrt2,mult_INR.
- then (Z.abs_nat p * Z.abs_nat p = 2* (q * q))%nat.
- ~= ((q*q)+(q*q))%nat.
- ~= (Div2.double (q*q)).
- then (q=0%nat) by main_theorem.
- hence thesis by H.
-end proof.
-Qed.
diff --git a/test-suite/success/decl_mode2.v b/test-suite/success/decl_mode2.v
deleted file mode 100644
index 46174e481..000000000
--- a/test-suite/success/decl_mode2.v
+++ /dev/null
@@ -1,249 +0,0 @@
-Theorem this_is_trivial: True.
-proof.
- thus thesis.
-end proof.
-Qed.
-
-Theorem T: (True /\ True) /\ True.
- split. split.
-proof. (* first subgoal *)
- thus thesis.
-end proof.
-trivial. (* second subgoal *)
-proof. (* third subgoal *)
- thus thesis.
-end proof.
-Abort.
-
-Theorem this_is_not_so_trivial: False.
-proof.
-end proof. (* here a warning is issued *)
-Fail Qed. (* fails: the proof in incomplete *)
-Admitted. (* Oops! *)
-
-Theorem T: True.
-proof.
-escape.
-auto.
-return.
-Abort.
-
-Theorem T: let a:=false in let b:= true in ( if a then True else False -> if b then True else False).
-intros a b.
-proof.
-assume H:(if a then True else False).
-reconsider H as False.
-reconsider thesis as True.
-Abort.
-
-Theorem T: forall x, x=2 -> 2+x=4.
-proof.
-let x be such that H:(x=2).
-have H':(2+x=2+2) by H.
-Abort.
-
-Theorem T: forall x, x=2 -> 2+x=4.
-proof.
-let x be such that H:(x=2).
-then (2+x=2+2).
-Abort.
-
-Theorem T: forall x, x=2 -> x + x = x * x.
-proof.
-let x be such that H:(x=2).
-have (4 = 4).
- ~= (2 * 2).
- ~= (x * x) by H.
- =~ (2 + 2).
- =~ H':(x + x) by H.
-Abort.
-
-Theorem T: forall x, x + x = x * x -> x = 0 \/ x = 2.
-proof.
-let x be such that H:(x + x = x * x).
-claim H':((x - 2) * x = 0).
-thus thesis.
-end claim.
-Abort.
-
-Theorem T: forall (A B:Prop), A -> B -> A /\ B.
-intros A B HA HB.
-proof.
-hence B.
-Abort.
-
-Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B /\ C.
-intros A B C HA HB HC.
-proof.
-thus B by HB.
-Abort.
-
-Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B.
-intros A B C HA HB HC.
-proof.
-Fail hence C. (* fails *)
-Abort.
-
-Theorem T: forall (A B:Prop), B -> A \/ B.
-intros A B HB.
-proof.
-hence B.
-Abort.
-
-Theorem T: forall (A B C D:Prop), C -> D -> (A /\ B) \/ (C /\ D).
-intros A B C D HC HD.
-proof.
-thus C by HC.
-Abort.
-
-Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x.
-intros P HP.
-proof.
-take 2.
-Abort.
-
-Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x.
-intros P HP.
-proof.
-hence (P 2).
-Abort.
-
-Theorem T: forall (P:nat -> Prop) (R:nat -> nat -> Prop), P 2 -> R 0 2 -> exists x, exists y, P y /\ R x y.
-intros P R HP HR.
-proof.
-thus (P 2) by HP.
-Abort.
-
-Theorem T: forall (A B:Prop) (P:nat -> Prop), (forall x, P x -> B) -> A -> A /\ B.
-intros A B P HP HA.
-proof.
-suffices to have x such that HP':(P x) to show B by HP,HP'.
-Abort.
-
-Theorem T: forall (A:Prop) (P:nat -> Prop), P 2 -> A -> A /\ (forall x, x = 2 -> P x).
-intros A P HP HA.
-proof.
-(* BUG: the next line fails when it should succeed.
-Waiting for someone to investigate the bug.
-focus on (forall x, x = 2 -> P x).
-let x be such that (x = 2).
-hence thesis by HP.
-end focus.
-*)
-Abort.
-
-Theorem T: forall x, x = 0 -> x + x = x * x.
-proof.
-let x be such that H:(x = 0).
-define sqr x as (x * x).
-reconsider thesis as (x + x = sqr x).
-Abort.
-
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-let x:nat.
-assume HP:(P x).
-Abort.
-
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-Fail let x. (* fails because x's type is not clear *)
-let x be such that HP:(P x). (* here x's type is inferred from (P x) *)
-Abort.
-
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x -> P x.
-proof.
-let P:(nat -> Prop).
-let x:nat.
-assume (P x). (* temporary name created *)
-Abort.
-
-Theorem T: forall (P:nat -> Prop), forall x, P x -> P x.
-proof.
-let P:(nat -> Prop).
-let x be such that (P x). (* temporary name created *)
-Abort.
-
-Theorem T: forall (P:nat -> Prop) (A:Prop), (exists x, (P x /\ A)) -> A.
-proof.
-let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A).
-consider x such that HP:(P x) and HA:A from H.
-Abort.
-
-(* Here is an example with pairs: *)
-
-Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p).
-proof.
-let p:(nat * nat)%type.
-consider x:nat,y:nat from p.
-reconsider thesis as (x >= y \/ x < y).
-Abort.
-
-Theorem T: forall P:(nat -> Prop), (forall n, P n -> P (n - 1)) ->
-(exists m, P m) -> P 0.
-proof.
-let P:(nat -> Prop) be such that HP:(forall n, P n -> P (n - 1)).
-given m such that Hm:(P m).
-Abort.
-
-Theorem T: forall (A B C:Prop), (A -> C) -> (B -> C) -> (A \/ B) -> C.
-proof.
-let A:Prop,B:Prop,C:Prop be such that HAC:(A -> C) and HBC:(B -> C).
-assume HAB:(A \/ B).
-per cases on HAB.
-suppose A.
- hence thesis by HAC.
-suppose HB:B.
- thus thesis by HB,HBC.
-end cases.
-Abort.
-
-Section Coq.
-
-Hypothesis EM : forall P:Prop, P \/ ~ P.
-
-Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C.
-proof.
-let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C).
-per cases of (A \/ ~A) by EM.
-suppose (~A).
- hence thesis by HNAC.
-suppose A.
- hence thesis by HAC.
-end cases.
-Abort.
-
-Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C.
-proof.
-let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C).
-per cases on (EM A).
-suppose (~A).
-Abort.
-End Coq.
-
-Theorem T: forall (A B:Prop) (x:bool), (if x then A else B) -> A \/ B.
-proof.
-let A:Prop,B:Prop,x:bool.
-per cases on x.
-suppose it is true.
- assume A.
- hence A.
-suppose it is false.
- assume B.
- hence B.
-end cases.
-Abort.
-
-Theorem T: forall (n:nat), n + 0 = n.
-proof.
-let n:nat.
-per induction on n.
-suppose it is 0.
- thus (0 + 0 = 0).
-suppose it is (S m) and H:thesis for m.
- then (S (m + 0) = S m).
- thus =~ (S m + 0).
-end induction.
-Abort. \ No newline at end of file
diff --git a/test-suite/success/old_typeclass.v b/test-suite/success/old_typeclass.v
new file mode 100644
index 000000000..01e35810b
--- /dev/null
+++ b/test-suite/success/old_typeclass.v
@@ -0,0 +1,13 @@
+Require Import Setoid Coq.Classes.Morphisms.
+Set Typeclasses Legacy Resolution.
+
+Declare Instance and_Proper_eq: Proper (Logic.eq ==> Logic.eq ==> Logic.eq) and.
+
+Axiom In : Prop.
+Axiom union_spec : In <-> True.
+
+Lemma foo : In /\ True.
+Proof.
+progress rewrite union_spec.
+repeat constructor.
+Qed.
diff --git a/test-suite/success/rewrite_evar.v b/test-suite/success/rewrite_evar.v
new file mode 100644
index 000000000..f7ad261cb
--- /dev/null
+++ b/test-suite/success/rewrite_evar.v
@@ -0,0 +1,8 @@
+Require Import Coq.Setoids.Setoid.
+
+Goal forall (T2 MT1 MT2 : Type) (x : T2) (M2 m2 : MT2) (M1 m1 : MT1) (F : T2 -> MT1 -> MT2 -> Prop),
+ (forall (defaultB : T2) (m3 : MT1) (m4 : MT2), F defaultB m3 m4 <-> True) -> F x M1 M2 -> F x m1 m2.
+ intros ????????? H' H.
+ rewrite (H' _) in *.
+ (** The above rewrite should also rewrite in H. *)
+ Fail progress rewrite H' in H.