diff options
Diffstat (limited to 'test-suite/success')
-rw-r--r-- | test-suite/success/Injection.v | 6 | ||||
-rw-r--r-- | test-suite/success/Typeclasses.v | 23 | ||||
-rw-r--r-- | test-suite/success/decl_mode2.v | 249 | ||||
-rw-r--r-- | test-suite/success/induct.v | 43 | ||||
-rw-r--r-- | test-suite/success/intros.v | 44 | ||||
-rw-r--r-- | test-suite/success/shrink_abstract.v | 13 | ||||
-rw-r--r-- | test-suite/success/shrink_obligations.v | 28 | ||||
-rw-r--r-- | test-suite/success/subst.v | 25 |
8 files changed, 430 insertions, 1 deletions
diff --git a/test-suite/success/Injection.v b/test-suite/success/Injection.v index 25e464d67..56ed89ed8 100644 --- a/test-suite/success/Injection.v +++ b/test-suite/success/Injection.v @@ -68,6 +68,12 @@ einjection (H O). instantiate (1:=O). Abort. +Goal (forall x y : nat, x = y -> S x = S y) -> True. +intros. +einjection (H O ?[y]) as H0. +instantiate (y:=O). +Abort. + (* Test the injection intropattern *) Goal forall (a b:nat) l l', cons a l = cons b l' -> a=b. diff --git a/test-suite/success/Typeclasses.v b/test-suite/success/Typeclasses.v index 30a2a7429..d6e590af3 100644 --- a/test-suite/success/Typeclasses.v +++ b/test-suite/success/Typeclasses.v @@ -57,4 +57,25 @@ Section sec. let's try to get rid of the intermediate constant foo. Surely we can just expand it inline, right? Wrong!: *) Check U (fun x => e x) _. -End sec.
\ No newline at end of file +End sec. + +Module IterativeDeepening. + + Class A. + Class B. + Class C. + + Instance: B -> A | 0. + Instance: C -> A | 0. + Instance: C -> B -> A | 0. + Instance: A -> A | 0. + + Goal C -> A. + intros. + Set Typeclasses Debug. + Fail Timeout 1 typeclasses eauto. + Set Typeclasses Iterative Deepening. + typeclasses eauto. + Qed. + +End IterativeDeepening. diff --git a/test-suite/success/decl_mode2.v b/test-suite/success/decl_mode2.v new file mode 100644 index 000000000..46174e481 --- /dev/null +++ b/test-suite/success/decl_mode2.v @@ -0,0 +1,249 @@ +Theorem this_is_trivial: True. +proof. + thus thesis. +end proof. +Qed. + +Theorem T: (True /\ True) /\ True. + split. split. +proof. (* first subgoal *) + thus thesis. +end proof. +trivial. (* second subgoal *) +proof. (* third subgoal *) + thus thesis. +end proof. +Abort. + +Theorem this_is_not_so_trivial: False. +proof. +end proof. (* here a warning is issued *) +Fail Qed. (* fails: the proof in incomplete *) +Admitted. (* Oops! *) + +Theorem T: True. +proof. +escape. +auto. +return. +Abort. + +Theorem T: let a:=false in let b:= true in ( if a then True else False -> if b then True else False). +intros a b. +proof. +assume H:(if a then True else False). +reconsider H as False. +reconsider thesis as True. +Abort. + +Theorem T: forall x, x=2 -> 2+x=4. +proof. +let x be such that H:(x=2). +have H':(2+x=2+2) by H. +Abort. + +Theorem T: forall x, x=2 -> 2+x=4. +proof. +let x be such that H:(x=2). +then (2+x=2+2). +Abort. + +Theorem T: forall x, x=2 -> x + x = x * x. +proof. +let x be such that H:(x=2). +have (4 = 4). + ~= (2 * 2). + ~= (x * x) by H. + =~ (2 + 2). + =~ H':(x + x) by H. +Abort. + +Theorem T: forall x, x + x = x * x -> x = 0 \/ x = 2. +proof. +let x be such that H:(x + x = x * x). +claim H':((x - 2) * x = 0). +thus thesis. +end claim. +Abort. + +Theorem T: forall (A B:Prop), A -> B -> A /\ B. +intros A B HA HB. +proof. +hence B. +Abort. + +Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B /\ C. +intros A B C HA HB HC. +proof. +thus B by HB. +Abort. + +Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B. +intros A B C HA HB HC. +proof. +Fail hence C. (* fails *) +Abort. + +Theorem T: forall (A B:Prop), B -> A \/ B. +intros A B HB. +proof. +hence B. +Abort. + +Theorem T: forall (A B C D:Prop), C -> D -> (A /\ B) \/ (C /\ D). +intros A B C D HC HD. +proof. +thus C by HC. +Abort. + +Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. +intros P HP. +proof. +take 2. +Abort. + +Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. +intros P HP. +proof. +hence (P 2). +Abort. + +Theorem T: forall (P:nat -> Prop) (R:nat -> nat -> Prop), P 2 -> R 0 2 -> exists x, exists y, P y /\ R x y. +intros P R HP HR. +proof. +thus (P 2) by HP. +Abort. + +Theorem T: forall (A B:Prop) (P:nat -> Prop), (forall x, P x -> B) -> A -> A /\ B. +intros A B P HP HA. +proof. +suffices to have x such that HP':(P x) to show B by HP,HP'. +Abort. + +Theorem T: forall (A:Prop) (P:nat -> Prop), P 2 -> A -> A /\ (forall x, x = 2 -> P x). +intros A P HP HA. +proof. +(* BUG: the next line fails when it should succeed. +Waiting for someone to investigate the bug. +focus on (forall x, x = 2 -> P x). +let x be such that (x = 2). +hence thesis by HP. +end focus. +*) +Abort. + +Theorem T: forall x, x = 0 -> x + x = x * x. +proof. +let x be such that H:(x = 0). +define sqr x as (x * x). +reconsider thesis as (x + x = sqr x). +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +let x:nat. +assume HP:(P x). +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +Fail let x. (* fails because x's type is not clear *) +let x be such that HP:(P x). (* here x's type is inferred from (P x) *) +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x -> P x. +proof. +let P:(nat -> Prop). +let x:nat. +assume (P x). (* temporary name created *) +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +let x be such that (P x). (* temporary name created *) +Abort. + +Theorem T: forall (P:nat -> Prop) (A:Prop), (exists x, (P x /\ A)) -> A. +proof. +let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A). +consider x such that HP:(P x) and HA:A from H. +Abort. + +(* Here is an example with pairs: *) + +Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p). +proof. +let p:(nat * nat)%type. +consider x:nat,y:nat from p. +reconsider thesis as (x >= y \/ x < y). +Abort. + +Theorem T: forall P:(nat -> Prop), (forall n, P n -> P (n - 1)) -> +(exists m, P m) -> P 0. +proof. +let P:(nat -> Prop) be such that HP:(forall n, P n -> P (n - 1)). +given m such that Hm:(P m). +Abort. + +Theorem T: forall (A B C:Prop), (A -> C) -> (B -> C) -> (A \/ B) -> C. +proof. +let A:Prop,B:Prop,C:Prop be such that HAC:(A -> C) and HBC:(B -> C). +assume HAB:(A \/ B). +per cases on HAB. +suppose A. + hence thesis by HAC. +suppose HB:B. + thus thesis by HB,HBC. +end cases. +Abort. + +Section Coq. + +Hypothesis EM : forall P:Prop, P \/ ~ P. + +Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. +proof. +let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). +per cases of (A \/ ~A) by EM. +suppose (~A). + hence thesis by HNAC. +suppose A. + hence thesis by HAC. +end cases. +Abort. + +Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. +proof. +let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). +per cases on (EM A). +suppose (~A). +Abort. +End Coq. + +Theorem T: forall (A B:Prop) (x:bool), (if x then A else B) -> A \/ B. +proof. +let A:Prop,B:Prop,x:bool. +per cases on x. +suppose it is true. + assume A. + hence A. +suppose it is false. + assume B. + hence B. +end cases. +Abort. + +Theorem T: forall (n:nat), n + 0 = n. +proof. +let n:nat. +per induction on n. +suppose it is 0. + thus (0 + 0 = 0). +suppose it is (S m) and H:thesis for m. + then (S (m + 0) = S m). + thus =~ (S m + 0). +end induction. +Abort.
\ No newline at end of file diff --git a/test-suite/success/induct.v b/test-suite/success/induct.v index b8c6bf3ff..1ed731f50 100644 --- a/test-suite/success/induct.v +++ b/test-suite/success/induct.v @@ -151,3 +151,46 @@ intros x H1 H. induction H. change (0 = z -> True) in IHrepr''. Abort. + +(* Test double induction *) + +(* This was failing in 8.5 and before because of a bug in the order of + hypotheses *) + +Inductive I2 : Type := + C2 : forall x:nat, x=x -> I2. +Goal forall a b:I2, a = b. +double induction a b. +Abort. + +(* This was leaving useless hypotheses in 8.5 and before because of + the same bug. This is a change of compatibility. *) + +Inductive I3 : Prop := + C3 : forall x:nat, x=x -> I3. +Goal forall a b:I3, a = b. +double induction a b. +Fail clear H. (* H should have been erased *) +Abort. + +(* This one had quantification in reverse order in 8.5 and before *) +(* This is a change of compatibility. *) + +Goal forall m n, le m n -> le n m -> n=m. +intros m n. double induction 1 2. +3:destruct 1. (* Should be "S m0 <= m0" *) +Abort. + +(* Idem *) + +Goal forall m n p q, le m n -> le p q -> n+p=m+q. +intros *. double induction 1 2. +3:clear H2. (* H2 should have been erased *) +Abort. + +(* This is unchanged *) + +Goal forall m n:nat, n=m. +double induction m n. +Abort. + diff --git a/test-suite/success/intros.v b/test-suite/success/intros.v index 11156aa0e..ee69df977 100644 --- a/test-suite/success/intros.v +++ b/test-suite/success/intros.v @@ -84,3 +84,47 @@ Qed. Goal forall x : nat, True. intros y%(fun x => x). Abort. + +(* Fixing a bug in the order of side conditions of a "->" step *) + +Goal (True -> 1=0) -> 1=1. +intros ->. +- reflexivity. +- exact I. +Qed. + +Goal forall x, (True -> x=0) -> 0=x. +intros x ->. +- reflexivity. +- exact I. +Qed. + +(* Fixing a bug when destructing a type with let-ins in the constructor *) + +Inductive I := C : let x:=1 in x=1 -> I. +Goal I -> True. +intros [x H]. (* Was failing in 8.5 *) +Abort. + +(* Ensuring that the (pat1,...,patn) intropatterns has the expected size, up + to skipping let-ins *) + +Goal I -> 1=1. +intros (H). (* This skips x *) +exact H. +Qed. + +Goal I -> 1=1. +Fail intros (x,H,H'). +Fail intros [|]. +intros (x,H). +exact H. +Qed. + +Goal Acc le 0 -> True. +Fail induction 1 as (n,H). (* Induction hypothesis is missing *) +induction 1 as (n,H,IH). +exact Logic.I. +Qed. + + diff --git a/test-suite/success/shrink_abstract.v b/test-suite/success/shrink_abstract.v new file mode 100644 index 000000000..3f6b9cb39 --- /dev/null +++ b/test-suite/success/shrink_abstract.v @@ -0,0 +1,13 @@ +Set Shrink Abstract. + +Definition foo : forall (n m : nat), bool. +Proof. +pose (p := 0). +intros n. +pose (q := n). +intros m. +pose (r := m). +abstract (destruct m; [left|right]). +Defined. + +Check (foo_subproof : nat -> bool). diff --git a/test-suite/success/shrink_obligations.v b/test-suite/success/shrink_obligations.v new file mode 100644 index 000000000..676b97878 --- /dev/null +++ b/test-suite/success/shrink_obligations.v @@ -0,0 +1,28 @@ +Require Program. + +Obligation Tactic := idtac. + +Set Shrink Obligations. + +Program Definition foo (m : nat) (p := S m) (n : nat) (q := S n) : unit := +let bar : {r | n < r} := _ in +let qux : {r | p < r} := _ in +let quz : m = n -> True := _ in +tt. +Next Obligation. +intros m p n q. +exists (S n); constructor. +Qed. +Next Obligation. +intros m p n q. +exists (S (S m)); constructor. +Qed. +Next Obligation. +intros m p n q ? ? H. +destruct H. +constructor. +Qed. + +Check (foo_obligation_1 : forall n, {r | n < r}). +Check (foo_obligation_2 : forall m, {r | (S m) < r}). +Check (foo_obligation_3 : forall m n, m = n -> True). diff --git a/test-suite/success/subst.v b/test-suite/success/subst.v new file mode 100644 index 000000000..8336f6a80 --- /dev/null +++ b/test-suite/success/subst.v @@ -0,0 +1,25 @@ +(* Test various subtleties of the "subst" tactics *) + +(* Should proceed from left to right (see #4222) *) +Goal forall x y, x = y -> x = 3 -> y = 2 -> x = y. +intros. +subst. +change (3 = 2) in H1. +change (3 = 3). +Abort. + +(* Should work with "x = y" and "x = t" equations (see #4214, failed in 8.4) *) +Goal forall x y, x = y -> x = 3 -> x = y. +intros. +subst. +change (3 = 3). +Abort. + +(* Should substitute cycles once, until a recursive equation is obtained *) +(* (failed in 8.4) *) +Goal forall x y, x = S y -> y = S x -> x = y. +intros. +subst. +change (y = S (S y)) in H0. +change (S y = y). +Abort. |