aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/dependentind.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/dependentind.v')
-rw-r--r--test-suite/success/dependentind.v6
1 files changed, 4 insertions, 2 deletions
diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v
index 3f315ccb7..d12c21b15 100644
--- a/test-suite/success/dependentind.v
+++ b/test-suite/success/dependentind.v
@@ -58,11 +58,13 @@ Inductive term : ctx -> type -> Type :=
Hint Constructors term : lambda.
+Open Local Scope context_scope.
+
Notation " Γ |-- τ " := (term Γ τ) (at level 0) : type_scope.
Lemma weakening : forall Γ Δ τ, term (Γ ;; Δ) τ ->
forall τ', term (Γ ,, τ' ;; Δ) τ.
-Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda.
+Proof with simpl in * ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda.
intros Γ Δ τ H.
dependent induction H.
@@ -81,7 +83,7 @@ Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda
Qed.
Lemma exchange : forall Γ Δ α β τ, term (Γ,, α,, β ;; Δ) τ -> term (Γ,, β,, α ;; Δ) τ.
-Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; auto.
+Proof with simpl in * ; subst ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; auto.
intros until 1.
dependent induction H.