diff options
Diffstat (limited to 'test-suite/success/dependentind.v')
-rw-r--r-- | test-suite/success/dependentind.v | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/test-suite/success/dependentind.v b/test-suite/success/dependentind.v index 3f315ccb7..d12c21b15 100644 --- a/test-suite/success/dependentind.v +++ b/test-suite/success/dependentind.v @@ -58,11 +58,13 @@ Inductive term : ctx -> type -> Type := Hint Constructors term : lambda. +Open Local Scope context_scope. + Notation " Γ |-- τ " := (term Γ τ) (at level 0) : type_scope. Lemma weakening : forall Γ Δ τ, term (Γ ;; Δ) τ -> forall τ', term (Γ ,, τ' ;; Δ) τ. -Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda. +Proof with simpl in * ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda. intros Γ Δ τ H. dependent induction H. @@ -81,7 +83,7 @@ Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; eauto with lambda Qed. Lemma exchange : forall Γ Δ α β τ, term (Γ,, α,, β ;; Δ) τ -> term (Γ,, β,, α ;; Δ) τ. -Proof with simpl in * ; simplify_dep_elim ; simplify_IH_hyps ; auto. +Proof with simpl in * ; subst ; reverse ; simplify_dep_elim ; simplify_IH_hyps ; auto. intros until 1. dependent induction H. |