diff options
Diffstat (limited to 'test-suite/success/decl_mode2.v')
-rw-r--r-- | test-suite/success/decl_mode2.v | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/test-suite/success/decl_mode2.v b/test-suite/success/decl_mode2.v new file mode 100644 index 000000000..46174e481 --- /dev/null +++ b/test-suite/success/decl_mode2.v @@ -0,0 +1,249 @@ +Theorem this_is_trivial: True. +proof. + thus thesis. +end proof. +Qed. + +Theorem T: (True /\ True) /\ True. + split. split. +proof. (* first subgoal *) + thus thesis. +end proof. +trivial. (* second subgoal *) +proof. (* third subgoal *) + thus thesis. +end proof. +Abort. + +Theorem this_is_not_so_trivial: False. +proof. +end proof. (* here a warning is issued *) +Fail Qed. (* fails: the proof in incomplete *) +Admitted. (* Oops! *) + +Theorem T: True. +proof. +escape. +auto. +return. +Abort. + +Theorem T: let a:=false in let b:= true in ( if a then True else False -> if b then True else False). +intros a b. +proof. +assume H:(if a then True else False). +reconsider H as False. +reconsider thesis as True. +Abort. + +Theorem T: forall x, x=2 -> 2+x=4. +proof. +let x be such that H:(x=2). +have H':(2+x=2+2) by H. +Abort. + +Theorem T: forall x, x=2 -> 2+x=4. +proof. +let x be such that H:(x=2). +then (2+x=2+2). +Abort. + +Theorem T: forall x, x=2 -> x + x = x * x. +proof. +let x be such that H:(x=2). +have (4 = 4). + ~= (2 * 2). + ~= (x * x) by H. + =~ (2 + 2). + =~ H':(x + x) by H. +Abort. + +Theorem T: forall x, x + x = x * x -> x = 0 \/ x = 2. +proof. +let x be such that H:(x + x = x * x). +claim H':((x - 2) * x = 0). +thus thesis. +end claim. +Abort. + +Theorem T: forall (A B:Prop), A -> B -> A /\ B. +intros A B HA HB. +proof. +hence B. +Abort. + +Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B /\ C. +intros A B C HA HB HC. +proof. +thus B by HB. +Abort. + +Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B. +intros A B C HA HB HC. +proof. +Fail hence C. (* fails *) +Abort. + +Theorem T: forall (A B:Prop), B -> A \/ B. +intros A B HB. +proof. +hence B. +Abort. + +Theorem T: forall (A B C D:Prop), C -> D -> (A /\ B) \/ (C /\ D). +intros A B C D HC HD. +proof. +thus C by HC. +Abort. + +Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. +intros P HP. +proof. +take 2. +Abort. + +Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. +intros P HP. +proof. +hence (P 2). +Abort. + +Theorem T: forall (P:nat -> Prop) (R:nat -> nat -> Prop), P 2 -> R 0 2 -> exists x, exists y, P y /\ R x y. +intros P R HP HR. +proof. +thus (P 2) by HP. +Abort. + +Theorem T: forall (A B:Prop) (P:nat -> Prop), (forall x, P x -> B) -> A -> A /\ B. +intros A B P HP HA. +proof. +suffices to have x such that HP':(P x) to show B by HP,HP'. +Abort. + +Theorem T: forall (A:Prop) (P:nat -> Prop), P 2 -> A -> A /\ (forall x, x = 2 -> P x). +intros A P HP HA. +proof. +(* BUG: the next line fails when it should succeed. +Waiting for someone to investigate the bug. +focus on (forall x, x = 2 -> P x). +let x be such that (x = 2). +hence thesis by HP. +end focus. +*) +Abort. + +Theorem T: forall x, x = 0 -> x + x = x * x. +proof. +let x be such that H:(x = 0). +define sqr x as (x * x). +reconsider thesis as (x + x = sqr x). +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +let x:nat. +assume HP:(P x). +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +Fail let x. (* fails because x's type is not clear *) +let x be such that HP:(P x). (* here x's type is inferred from (P x) *) +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x -> P x. +proof. +let P:(nat -> Prop). +let x:nat. +assume (P x). (* temporary name created *) +Abort. + +Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. +proof. +let P:(nat -> Prop). +let x be such that (P x). (* temporary name created *) +Abort. + +Theorem T: forall (P:nat -> Prop) (A:Prop), (exists x, (P x /\ A)) -> A. +proof. +let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A). +consider x such that HP:(P x) and HA:A from H. +Abort. + +(* Here is an example with pairs: *) + +Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p). +proof. +let p:(nat * nat)%type. +consider x:nat,y:nat from p. +reconsider thesis as (x >= y \/ x < y). +Abort. + +Theorem T: forall P:(nat -> Prop), (forall n, P n -> P (n - 1)) -> +(exists m, P m) -> P 0. +proof. +let P:(nat -> Prop) be such that HP:(forall n, P n -> P (n - 1)). +given m such that Hm:(P m). +Abort. + +Theorem T: forall (A B C:Prop), (A -> C) -> (B -> C) -> (A \/ B) -> C. +proof. +let A:Prop,B:Prop,C:Prop be such that HAC:(A -> C) and HBC:(B -> C). +assume HAB:(A \/ B). +per cases on HAB. +suppose A. + hence thesis by HAC. +suppose HB:B. + thus thesis by HB,HBC. +end cases. +Abort. + +Section Coq. + +Hypothesis EM : forall P:Prop, P \/ ~ P. + +Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. +proof. +let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). +per cases of (A \/ ~A) by EM. +suppose (~A). + hence thesis by HNAC. +suppose A. + hence thesis by HAC. +end cases. +Abort. + +Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. +proof. +let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). +per cases on (EM A). +suppose (~A). +Abort. +End Coq. + +Theorem T: forall (A B:Prop) (x:bool), (if x then A else B) -> A \/ B. +proof. +let A:Prop,B:Prop,x:bool. +per cases on x. +suppose it is true. + assume A. + hence A. +suppose it is false. + assume B. + hence B. +end cases. +Abort. + +Theorem T: forall (n:nat), n + 0 = n. +proof. +let n:nat. +per induction on n. +suppose it is 0. + thus (0 + 0 = 0). +suppose it is (S m) and H:thesis for m. + then (S (m + 0) = S m). + thus =~ (S m + 0). +end induction. +Abort.
\ No newline at end of file |