aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/TestRefine.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/TestRefine.v')
-rw-r--r--test-suite/success/TestRefine.v191
1 files changed, 114 insertions, 77 deletions
diff --git a/test-suite/success/TestRefine.v b/test-suite/success/TestRefine.v
index ee3d7e3f8..8ed0f7ba6 100644
--- a/test-suite/success/TestRefine.v
+++ b/test-suite/success/TestRefine.v
@@ -6,27 +6,32 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* Petit bench vite fait, mal fait *)
-
-Require Refine.
-
-
(************************************************************************)
-Lemma essai : (x:nat)x=x.
+Lemma essai : forall x : nat, x = x.
-Refine (([x0:nat]Cases x0 of
- O => ?
- | (S p) => ?
- end) :: (x:nat)x=x). (* x0=x0 et x0=x0 *)
+ refine
+ ((fun x0 : nat => match x0 with
+ | O => _
+ | S p => _
+ end)
+ :forall x : nat, x = x). (* x0=x0 et x0=x0 *)
Restart.
-Refine [x0:nat]<[n:nat]n=n>Case x0 of ? [p:nat]? end. (* OK *)
+ refine
+ (fun x0 : nat => match x0 as n return (n = n) with
+ | O => _
+ | S p => _
+ end). (* OK *)
Restart.
-Refine [x0:nat]<[n:nat]n=n>Cases x0 of O => ? | (S p) => ? end. (* OK *)
+ refine
+ (fun x0 : nat => match x0 as n return (n = n) with
+ | O => _
+ | S p => _
+ end). (* OK *)
Restart.
@@ -41,40 +46,52 @@ Abort.
Lemma T : nat.
-Refine (S ?).
+ refine (S _).
Abort.
(************************************************************************)
-Lemma essai2 : (x:nat)x=x.
+Lemma essai2 : forall x : nat, x = x.
-Refine Fix f{f/1 : (x:nat)x=x := [x:nat]? }.
+ refine (fix f (x : nat) : x = x := _).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Case x of ? [p:nat]? end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat]n=n>Cases x of O => ? | (S p) => ? end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n) with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Case x of
- ?
- [p:nat](f_equal nat nat S p p ?) end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => f_equal S _
+ end).
Restart.
-Refine Fix f{f/1 : (x:nat)x=x :=
- [x:nat]<[n:nat](eq nat n n)>Cases x of
- O => ?
- | (S p) =>(f_equal nat nat S p p ?) end}.
+ refine
+ (fix f (x : nat) : x = x :=
+ match x as n return (n = n :>nat) with
+ | O => _
+ | S p => f_equal S _
+ end).
Abort.
@@ -83,13 +100,13 @@ Abort.
Lemma essai : nat.
-Parameter f : nat*nat -> nat -> nat.
+Parameter f : nat * nat -> nat -> nat.
-Refine (f ? ([x:nat](? :: nat) O)).
+ refine (f _ ((fun x : nat => _:nat) 0)).
Restart.
-Refine (f ? O).
+ refine (f _ 0).
Abort.
@@ -98,93 +115,113 @@ Abort.
Parameter P : nat -> Prop.
-Lemma essai : { x:nat | x=(S O) }.
+Lemma essai : {x : nat | x = 1}.
-Refine (exist nat ? (S O) ?). (* ECHEC *)
+ refine (exist _ 1 _). (* ECHEC *)
Restart.
(* mais si on contraint par le but alors ca marche : *)
(* Remarque : on peut toujours faire ça *)
-Refine ((exist nat ? (S O) ?) :: { x:nat | x=(S O) }).
+ refine (exist _ 1 _:{x : nat | x = 1}).
Restart.
-Refine (exist nat [x:nat](x=(S O)) (S O) ?).
+ refine (exist (fun x : nat => x = 1) 1 _).
Abort.
(************************************************************************)
-Lemma essai : (n:nat){ x:nat | x=(S n) }.
+Lemma essai : forall n : nat, {x : nat | x = S n}.
-Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end.
+ refine
+ (fun n : nat =>
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine (([n:nat]Case n of ? [p:nat]? end) :: (n:nat){ x:nat | x=(S n) }).
+ refine
+ ((fun n : nat => match n with
+ | O => _
+ | S p => _
+ end)
+ :forall n : nat, {x : nat | x = S n}).
Restart.
-Refine [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end.
+ refine
+ (fun n : nat =>
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
- [n:nat]<[n:nat]{x:nat|x=(S n)}>Case n of ? [p:nat]? end}.
+ refine
+ (fix f (n : nat) : {x : nat | x = S n} :=
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
Restart.
-Refine Fix f{f/1 :(n:nat){x:nat|x=(S n)} :=
- [n:nat]<[n:nat]{x:nat|x=(S n)}>Cases n of O => ? | (S p) => ? end}.
+ refine
+ (fix f (n : nat) : {x : nat | x = S n} :=
+ match n return {x : nat | x = S n} with
+ | O => _
+ | S p => _
+ end).
-Exists (S O). Trivial.
-Elim (f0 p).
-Refine [x:nat][h:x=(S p)](exist nat [x:nat]x=(S (S p)) (S x) ?).
-Rewrite h. Auto.
-Save.
+exists 1. trivial.
+elim (f0 p).
+ refine
+ (fun (x : nat) (h : x = S p) => exist (fun x : nat => x = S (S p)) (S x) _).
+ rewrite h. auto.
+Qed.
(* Quelques essais de recurrence bien fondée *)
-Require Wf.
-Require Wf_nat.
+Require Import Wf.
+Require Import Wf_nat.
-Lemma essai_wf : nat->nat.
+Lemma essai_wf : nat -> nat.
-Refine [x:nat](well_founded_induction
- nat
- lt ?
- [_:nat]nat->nat
- [phi0:nat][w:(phi:nat)(lt phi phi0)->nat->nat](w x ?)
- x x).
-Exact lt_wf.
+ refine
+ (fun x : nat =>
+ well_founded_induction _ (fun _ : nat => nat -> nat)
+ (fun (phi0 : nat) (w : forall phi : nat, phi < phi0 -> nat -> nat) =>
+ w x _) x x).
+exact lt_wf.
Abort.
-Require Compare_dec.
-Require Lt.
+Require Import Compare_dec.
+Require Import Lt.
Lemma fibo : nat -> nat.
-Refine (well_founded_induction
- nat
- lt ?
- [_:nat]nat
- [x0:nat][fib:(x:nat)(lt x x0)->nat]
- Cases (zerop x0) of
- (left _) => (S O)
- | (right h1) => Cases (zerop (pred x0)) of
- (left _) => (S O)
- | (right h2) => (plus (fib (pred x0) ?)
- (fib (pred (pred x0)) ?))
- end
- end).
-Exact lt_wf.
-Auto with arith.
-Apply lt_trans with m:=(pred x0); Auto with arith.
-Save.
-
+ refine
+ (well_founded_induction _ (fun _ : nat => nat)
+ (fun (x0 : nat) (fib : forall x : nat, x < x0 -> nat) =>
+ match zerop x0 with
+ | left _ => 1
+ | right h1 =>
+ match zerop (pred x0) with
+ | left _ => 1
+ | right h2 => fib (pred x0) _ + fib (pred (pred x0)) _
+ end
+ end)).
+exact lt_wf.
+auto with arith.
+apply lt_trans with (m := pred x0); auto with arith.
+Qed.