diff options
Diffstat (limited to 'test-suite/success/LetPat.v')
-rw-r--r-- | test-suite/success/LetPat.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/test-suite/success/LetPat.v b/test-suite/success/LetPat.v index 4c790680d..0e557aee0 100644 --- a/test-suite/success/LetPat.v +++ b/test-suite/success/LetPat.v @@ -9,22 +9,22 @@ Print l3. Record someT (A : Type) := mkT { a : nat; b: A }. -Definition l4 A (t : someT A) : nat := let 'mkT x y := t in x. +Definition l4 A (t : someT A) : nat := let 'mkT _ x y := t in x. Print l4. Print sigT. Definition l5 A (B : A -> Type) (t : sigT B) : B (projT1 t) := - let 'existT x y := t return B (projT1 t) in y. + let 'existT _ x y := t return B (projT1 t) in y. Definition l6 A (B : A -> Type) (t : sigT B) : B (projT1 t) := - let 'existT x y as t' := t return B (projT1 t') in y. + let 'existT _ x y as t' := t return B (projT1 t') in y. Definition l7 A (B : A -> Type) (t : sigT B) : B (projT1 t) := - let 'existT x y as t' in sigT _ := t return B (projT1 t') in y. + let 'existT _ x y as t' in sigT _ := t return B (projT1 t') in y. Definition l8 A (B : A -> Type) (t : sigT B) : B (projT1 t) := match t with - existT x y => y + existT _ x y => y end. (** An example from algebra, using let' and inference of return clauses |