aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/LetPat.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/LetPat.v')
-rw-r--r--test-suite/success/LetPat.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/test-suite/success/LetPat.v b/test-suite/success/LetPat.v
index 4c790680d..0e557aee0 100644
--- a/test-suite/success/LetPat.v
+++ b/test-suite/success/LetPat.v
@@ -9,22 +9,22 @@ Print l3.
Record someT (A : Type) := mkT { a : nat; b: A }.
-Definition l4 A (t : someT A) : nat := let 'mkT x y := t in x.
+Definition l4 A (t : someT A) : nat := let 'mkT _ x y := t in x.
Print l4.
Print sigT.
Definition l5 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
- let 'existT x y := t return B (projT1 t) in y.
+ let 'existT _ x y := t return B (projT1 t) in y.
Definition l6 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
- let 'existT x y as t' := t return B (projT1 t') in y.
+ let 'existT _ x y as t' := t return B (projT1 t') in y.
Definition l7 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
- let 'existT x y as t' in sigT _ := t return B (projT1 t') in y.
+ let 'existT _ x y as t' in sigT _ := t return B (projT1 t') in y.
Definition l8 A (B : A -> Type) (t : sigT B) : B (projT1 t) :=
match t with
- existT x y => y
+ existT _ x y => y
end.
(** An example from algebra, using let' and inference of return clauses