diff options
Diffstat (limited to 'test-suite/success/Equations.v')
-rw-r--r-- | test-suite/success/Equations.v | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/test-suite/success/Equations.v b/test-suite/success/Equations.v index d3b53ba5d..e31135c2f 100644 --- a/test-suite/success/Equations.v +++ b/test-suite/success/Equations.v @@ -64,7 +64,7 @@ Inductive finle : Π (n : nat) (x : fin n) (y : fin n), Prop := Scheme finle_ind_dep := Induction for finle Sort Prop. Instance finle_ind_pack n x y : DependentEliminationPackage (finle n x y) := - elim_type := _ ; elim := finle_ind_dep. + { elim_type := _ ; elim := finle_ind_dep }. Implicit Arguments finle [[n]]. @@ -97,8 +97,8 @@ Class BelowPack (A : Type) := { Below : Type ; below : Below }. Instance nat_BelowPack : BelowPack nat := - Below := Π P n step, Below_nat P n ; - below := λ P n step, below_nat P n (step P). + { Below := Π P n step, Below_nat P n ; + below := λ P n step, below_nat P n (step P) }. Definition rec_nat (P : nat -> Type) n (step : Π n, Below_nat P n -> P n) : P n := step n (below_nat P n step). @@ -114,12 +114,12 @@ below_vector P A ?(S n) (Vcons a v) step := (step A n v rest, rest). Instance vector_BelowPack : BelowPack (Π A n, vector A n) := - Below := Π P A n v step, Below_vector P A n v ; - below := λ P A n v step, below_vector P A n v (step P). + { Below := Π P A n v step, Below_vector P A n v ; + below := λ P A n v step, below_vector P A n v (step P) }. Instance vector_noargs_BelowPack A n : BelowPack (vector A n) := - Below := Π P v step, Below_vector P A n v ; - below := λ P v step, below_vector P A n v (step P). + { Below := Π P v step, Below_vector P A n v ; + below := λ P v step, below_vector P A n v (step P) }. Definition rec_vector (P : Π A n, vector A n -> Type) A n v (step : Π A n (v : vector A n), Below_vector P A n v -> P A n v) : P A n v := @@ -129,16 +129,16 @@ Class Recursor (A : Type) (BP : BelowPack A) := { rec_type : Π x : A, Type ; rec : Π x : A, rec_type x }. Instance nat_Recursor : Recursor nat nat_BelowPack := - rec_type := λ n, Π P step, P n ; - rec := λ n P step, rec_nat P n (step P). + { rec_type := λ n, Π P step, P n ; + rec := λ n P step, rec_nat P n (step P) }. (* Instance vect_Recursor : Recursor (Π A n, vector A n) vector_BelowPack := *) (* rec_type := Π (P : Π A n, vector A n -> Type) step A n v, P A n v; *) (* rec := λ P step A n v, rec_vector P A n v step. *) Instance vect_Recursor_noargs A n : Recursor (vector A n) (vector_noargs_BelowPack A n) := - rec_type := λ v, Π (P : Π A n, vector A n -> Type) step, P A n v; - rec := λ v P step, rec_vector P A n v step. + { rec_type := λ v, Π (P : Π A n, vector A n -> Type) step, P A n v; + rec := λ v P step, rec_vector P A n v step }. Implicit Arguments Below_vector [P A n]. @@ -295,8 +295,8 @@ noConfusion_vect P A (S n) (Vcons a v) (Vcons a v) refl := λ p : a = a -> v = v (* noConfusion := λ P x y, noConfusion_fin P n x y. *) Instance vect_noconf A n : NoConfusionPackage (vector A n) := - NoConfusion := λ P, Π x y, x = y -> NoConfusion_vect P x y ; - noConfusion := λ P x y, noConfusion_vect P A n x y. + { NoConfusion := λ P, Π x y, x = y -> NoConfusion_vect P x y ; + noConfusion := λ P x y, noConfusion_vect P A n x y }. Equations fog {n} (f : fin n) : nat := fog (S n) fz := 0 ; fog (S n) (fs f) := S (fog f). |