diff options
Diffstat (limited to 'test-suite/modules/PO.v')
-rw-r--r-- | test-suite/modules/PO.v | 64 |
1 files changed, 32 insertions, 32 deletions
diff --git a/test-suite/modules/PO.v b/test-suite/modules/PO.v index 9ba3fb2e6..354c3957f 100644 --- a/test-suite/modules/PO.v +++ b/test-suite/modules/PO.v @@ -1,57 +1,57 @@ -Implicit Arguments On. +Set Implicit Arguments. +Unset Strict Implicit. -Implicits fst. -Implicits snd. +Implicit Arguments fst. +Implicit Arguments snd. Module Type PO. - Parameter T:Set. - Parameter le:T->T->Prop. + Parameter T : Set. + Parameter le : T -> T -> Prop. - Axiom le_refl : (x:T)(le x x). - Axiom le_trans : (x,y,z:T)(le x y) -> (le y z) -> (le x z). - Axiom le_antis : (x,y:T)(le x y) -> (le y x) -> (x=y). + Axiom le_refl : forall x : T, le x x. + Axiom le_trans : forall x y z : T, le x y -> le y z -> le x z. + Axiom le_antis : forall x y : T, le x y -> le y x -> x = y. - Hints Resolve le_refl le_trans le_antis. + Hint Resolve le_refl le_trans le_antis. End PO. -Module Pair[X:PO][Y:PO] <: PO. - Definition T:=X.T*Y.T. - Definition le:=[p1,p2] - (X.le (fst p1) (fst p2)) /\ (Y.le (snd p1) (snd p2)). +Module Pair (X: PO) (Y: PO) <: PO. + Definition T := (X.T * Y.T)%type. + Definition le p1 p2 := X.le (fst p1) (fst p2) /\ Y.le (snd p1) (snd p2). - Hints Unfold le. + Hint Unfold le. - Lemma le_refl : (p:T)(le p p). - Info Auto. + Lemma le_refl : forall p : T, le p p. + info auto. Qed. - Lemma le_trans : (p1,p2,p3:T)(le p1 p2) -> (le p2 p3) -> (le p1 p3). - Unfold le; Intuition; Info EAuto. + Lemma le_trans : forall p1 p2 p3 : T, le p1 p2 -> le p2 p3 -> le p1 p3. + unfold le in |- *; intuition; info eauto. Qed. - Lemma le_antis : (p1,p2:T)(le p1 p2) -> (le p2 p1) -> (p1=p2). - NewDestruct p1. - NewDestruct p2. - Unfold le. - Intuition. - CutRewrite t=t1. - CutRewrite t0=t2. - Reflexivity. + Lemma le_antis : forall p1 p2 : T, le p1 p2 -> le p2 p1 -> p1 = p2. + destruct p1. + destruct p2. + unfold le in |- *. + intuition. + cutrewrite (t = t1). + cutrewrite (t0 = t2). + reflexivity. - Info Auto. + info auto. - Info Auto. + info auto. Qed. End Pair. -Read Module Nat. +Require Nat. Module NN := Pair Nat Nat. -Lemma zz_min : (p:NN.T)(NN.le (O,O) p). - Info Auto with arith. -Qed. +Lemma zz_min : forall p : NN.T, NN.le (0, 0) p. + info auto with arith. +Qed.
\ No newline at end of file |