aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/modules/Nat.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/modules/Nat.v')
-rw-r--r--test-suite/modules/Nat.v68
1 files changed, 68 insertions, 0 deletions
diff --git a/test-suite/modules/Nat.v b/test-suite/modules/Nat.v
new file mode 100644
index 000000000..d0ad6a5e2
--- /dev/null
+++ b/test-suite/modules/Nat.v
@@ -0,0 +1,68 @@
+Definition T:=nat.
+
+Definition le:=Peano.le.
+
+Hints Unfold le.
+
+Lemma le_refl:(n:nat)(le n n).
+ Auto.
+Save.
+
+Lemma le_trans:(n,m,k:nat)(le n m) -> (le m k) -> (le n k).
+ Unfold le.
+ Intros.
+ Generalize H.
+ Clear H.
+ Elim H0.
+ Auto.
+ Auto.
+Save.
+
+Lemma le_mono_S : (n,m:nat)(le n m) -> (le (S n) (S m)).
+ Unfold le.
+ NewInduction 1.
+ Auto.
+ Auto.
+Save.
+
+Hints Resolve le_mono_S.
+
+Lemma le_pred_mono : (n,m:nat) (le n m) -> (le (pred n) (pred m)).
+ Unfold le.
+ Induction 1.
+ Auto.
+ Intro.
+ Case m0.
+ Auto.
+ Intro.
+ Simpl.
+ Auto.
+Save.
+
+Hints Resolve le_pred_mono.
+
+Lemma le_S_mono : (m,n:nat)(le (S n) (S m)) -> (le n m).
+ Intros.
+ Change (le (pred (S n)) (pred (S m))).
+ Auto.
+Save.
+
+Hints Resolve le_S_mono.
+
+Lemma le_antis:(n,m:nat)(le n m) -> (le m n) -> n=m.
+ NewInduction n.
+ Intros.
+ Inversion H0.
+ Reflexivity.
+
+ Intros.
+ Inversion H.
+ Auto.
+ Rewrite (IHn m0).
+ Auto.
+ Rewrite <- H2 in H.
+ Auto.
+ Rewrite <- H2 in H0.
+ Auto.
+Save.
+