aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/bugs
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/bugs')
-rw-r--r--test-suite/bugs/closed/3662.v5
1 files changed, 2 insertions, 3 deletions
diff --git a/test-suite/bugs/closed/3662.v b/test-suite/bugs/closed/3662.v
index 753fb33ca..bd53389b4 100644
--- a/test-suite/bugs/closed/3662.v
+++ b/test-suite/bugs/closed/3662.v
@@ -39,9 +39,8 @@ Defined.
Lemma eta A B : forall x : prod A B, x = pair (fst x) (snd x). reflexivity. Qed.
Goal forall x : prod nat nat, fst x = 0.
- intros. unfold fst. rewrite (eta x). cbv iota. cbv delta. cbv iota.
- cbv delta.
- match goal with
+ intros. unfold fst.
+ Fail match goal with
| [ |- fst ?x = 0 ] => idtac
end.
Abort.