diff options
Diffstat (limited to 'test-suite/bugs/opened')
-rw-r--r-- | test-suite/bugs/opened/3956.v | 141 |
1 files changed, 0 insertions, 141 deletions
diff --git a/test-suite/bugs/opened/3956.v b/test-suite/bugs/opened/3956.v deleted file mode 100644 index 94c0c6744..000000000 --- a/test-suite/bugs/opened/3956.v +++ /dev/null @@ -1,141 +0,0 @@ -(* -*- mode: coq; mode: visual-line -*- *) -Set Universe Polymorphism. -Set Primitive Projections. -Close Scope nat_scope. - -Record prod (A B : Type) := pair { fst : A ; snd : B }. -Arguments pair {A B} _ _. -Arguments fst {A B} _ / . -Arguments snd {A B} _ / . -Notation "x * y" := (prod x y) : type_scope. -Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope. - -Definition Type1 := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}. -Definition Type2 := Eval hnf in let gt := (Type1 : Type@{i}) in Type@{i}. - -Inductive paths {A : Type} (a : A) : A -> Type := - idpath : paths a a. -Arguments idpath {A a} , [A] a. -Notation "x = y" := (@paths _ x y) : type_scope. -Definition concat {A} {x y z : A} (p : x = y) (q : y = z) : x = z - := match p, q with idpath, idpath => idpath end. - -Definition path_prod {A B : Type} (z z' : A * B) -: (fst z = fst z') -> (snd z = snd z') -> (z = z'). -Proof. - destruct z, z'; simpl; intros [] []; reflexivity. -Defined. - -Module Type TypeM. - Parameter m : Type2. -End TypeM. - -Module ProdM (XM : TypeM) (YM : TypeM) <: TypeM. - Definition m := XM.m * YM.m. -End ProdM. - -Module Type FunctionM (XM YM : TypeM). - Parameter m : XM.m -> YM.m. -End FunctionM. - -Module IdmapM (XM : TypeM) <: FunctionM XM XM. - Definition m := (fun x => x) : XM.m -> XM.m. -End IdmapM. - -Module Type HomotopyM (XM YM : TypeM) (fM gM : FunctionM XM YM). - Parameter m : forall x, fM.m x = gM.m x. -End HomotopyM. - -Module ComposeM (XM YM ZM : TypeM) - (gM : FunctionM YM ZM) (fM : FunctionM XM YM) - <: FunctionM XM ZM. - Definition m := (fun x => gM.m (fM.m x)). -End ComposeM. - -Module Type CorecM (YM ZM : TypeM) (fM : FunctionM YM ZM) - (XM : TypeM) (gM : FunctionM XM ZM). - Parameter m : XM.m -> YM.m. - Parameter m_beta : forall x, fM.m (m x) = gM.m x. -End CorecM. - -Module Type CoindpathsM (YM ZM : TypeM) (fM : FunctionM YM ZM) - (XM : TypeM) (hM kM : FunctionM XM YM). - Module fhM := ComposeM XM YM ZM fM hM. - Module fkM := ComposeM XM YM ZM fM kM. - Declare Module mM (pM : HomotopyM XM ZM fhM fkM) - : HomotopyM XM YM hM kM. -End CoindpathsM. - -Module Type Comodality (XM : TypeM). - Parameter m : Type2. - Module mM <: TypeM. - Definition m := m. - End mM. - Parameter from : m -> XM.m. - Module fromM <: FunctionM mM XM. - Definition m := from. - End fromM. - Declare Module corecM : CorecM mM XM fromM. - Declare Module coindpathsM : CoindpathsM mM XM fromM. -End Comodality. - -Module Comodality_Theory (F : Comodality). - - Module F_functor_M (XM YM : TypeM) (fM : FunctionM XM YM) - (FXM : Comodality XM) (FYM : Comodality YM). - Module f_o_from_M <: FunctionM FXM.mM YM. - Definition m := fun x => fM.m (FXM.from x). - End f_o_from_M. - Module mM := FYM.corecM FXM.mM f_o_from_M. - Definition m := mM.m. - End F_functor_M. - - Module F_prod_cmp_M (XM YM : TypeM) - (FXM : Comodality XM) (FYM : Comodality YM). - Module PM := ProdM XM YM. - Module PFM := ProdM FXM FYM. - Module fstM <: FunctionM PM XM. - Definition m := @fst XM.m YM.m. - End fstM. - Module sndM <: FunctionM PM YM. - Definition m := @snd XM.m YM.m. - End sndM. - Module FPM := F PM. - Module FfstM := F_functor_M PM XM fstM FPM FXM. - Module FsndM := F_functor_M PM YM sndM FPM FYM. - Definition m : FPM.m -> PFM.m - := fun z => (FfstM.m z , FsndM.m z). - End F_prod_cmp_M. - - Module isequiv_F_prod_cmp_M - (XM YM : TypeM) - (FXM : Comodality XM) (FYM : Comodality YM). - (** The comparison map *) - Module cmpM := F_prod_cmp_M XM YM FXM FYM. - Module FPM := cmpM.FPM. - (** We construct an inverse to it using corecursion. *) - Module prod_from_M <: FunctionM cmpM.PFM cmpM.PM. - Definition m : cmpM.PFM.m -> cmpM.PM.m - := fun z => ( FXM.from (fst z) , FYM.from (snd z) ). - End prod_from_M. - Module cmpinvM <: FunctionM cmpM.PFM FPM - := FPM.corecM cmpM.PFM prod_from_M. - (** We prove the first homotopy *) - Module cmpinv_o_cmp_M <: FunctionM FPM FPM - := ComposeM FPM cmpM.PFM FPM cmpinvM cmpM. - Module idmap_FPM <: FunctionM FPM FPM - := IdmapM FPM. - Module cip_FPM := FPM.coindpathsM FPM cmpinv_o_cmp_M idmap_FPM. - Module cip_FPHM <: HomotopyM FPM cmpM.PM cip_FPM.fhM cip_FPM.fkM. - Definition m : forall x, cip_FPM.fhM.m@{i j} x = cip_FPM.fkM.m@{i j} x. - Proof. - intros x. - refine (concat (cmpinvM.m_beta@{i j} (cmpM.m@{i j} x)) _). - apply path_prod@{i i i}; simpl. - - exact (cmpM.FfstM.mM.m_beta@{i j} x). - - exact (cmpM.FsndM.mM.m_beta@{i j} x). - Defined. - Fail End cip_FPHM. -(* End isequiv_F_prod_cmp_M. - -End Comodality_Theory.*) |