aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/tactics.ml
diff options
context:
space:
mode:
Diffstat (limited to 'tactics/tactics.ml')
-rw-r--r--tactics/tactics.ml710
1 files changed, 355 insertions, 355 deletions
diff --git a/tactics/tactics.ml b/tactics/tactics.ml
index 1ac95f728..7796c36fb 100644
--- a/tactics/tactics.ml
+++ b/tactics/tactics.ml
@@ -72,7 +72,7 @@ let inj_red_expr = function
let inj_ebindings = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map inj_open l)
- | ExplicitBindings l ->
+ | ExplicitBindings l ->
ExplicitBindings (List.map (fun (l,id,c) -> (l,id,inj_open c)) l)
let dloc = dummy_loc
@@ -85,10 +85,10 @@ let dloc = dummy_loc
(* General functions *)
(****************************************)
-let string_of_inductive c =
+let string_of_inductive c =
try match kind_of_term c with
- | Ind ind_sp ->
- let (mib,mip) = Global.lookup_inductive ind_sp in
+ | Ind ind_sp ->
+ let (mib,mip) = Global.lookup_inductive ind_sp in
string_of_id mip.mind_typename
| _ -> raise Bound
with Bound -> error "Bound head variable."
@@ -101,14 +101,14 @@ let rec head_constr_bound t =
| Const _ | Ind _ | Construct _ | Var _ -> (hd,args)
| _ -> raise Bound
-let head_constr c =
+let head_constr c =
try head_constr_bound c with Bound -> error "Bound head variable."
(******************************************)
(* Primitive tactics *)
(******************************************)
-let introduction = Tacmach.introduction
+let introduction = Tacmach.introduction
let refine = Tacmach.refine
let convert_concl = Tacmach.convert_concl
let convert_hyp = Tacmach.convert_hyp
@@ -117,16 +117,16 @@ let thin_body = Tacmach.thin_body
let error_clear_dependency env id = function
| Evarutil.OccurHypInSimpleClause None ->
errorlabstrm "" (pr_id id ++ str " is used in conclusion.")
- | Evarutil.OccurHypInSimpleClause (Some id') ->
+ | Evarutil.OccurHypInSimpleClause (Some id') ->
errorlabstrm ""
(pr_id id ++ strbrk " is used in hypothesis " ++ pr_id id' ++ str".")
| Evarutil.EvarTypingBreak ev ->
errorlabstrm ""
- (str "Cannot remove " ++ pr_id id ++
- strbrk " without breaking the typing of " ++
+ (str "Cannot remove " ++ pr_id id ++
+ strbrk " without breaking the typing of " ++
Printer.pr_existential env ev ++ str".")
-let thin l gl =
+let thin l gl =
try thin l gl
with Evarutil.ClearDependencyError (id,err) ->
error_clear_dependency (pf_env gl) id err
@@ -148,7 +148,7 @@ let internal_cut_rev = internal_cut_rev_gen false
let internal_cut_rev_replace = internal_cut_rev_gen true
(* Moving hypotheses *)
-let move_hyp = Tacmach.move_hyp
+let move_hyp = Tacmach.move_hyp
let order_hyps = Tacmach.order_hyps
@@ -173,7 +173,7 @@ let fresh_id avoid id gl =
let mutual_fix = Tacmach.mutual_fix
let fix ido n gl = match ido with
- | None ->
+ | None ->
mutual_fix (fresh_id [] (Pfedit.get_current_proof_name ()) gl) n [] 0 gl
| Some id ->
mutual_fix id n [] 0 gl
@@ -182,7 +182,7 @@ let fix ido n gl = match ido with
let mutual_cofix = Tacmach.mutual_cofix
let cofix ido gl = match ido with
- | None ->
+ | None ->
mutual_cofix (fresh_id [] (Pfedit.get_current_proof_name ()) gl) [] 0 gl
| Some id ->
mutual_cofix id [] 0 gl
@@ -196,7 +196,7 @@ type tactic_reduction = env -> evar_map -> constr -> constr
let pf_reduce_decl redfun where (id,c,ty) gl =
let redfun' = pf_reduce redfun gl in
match c with
- | None ->
+ | None ->
if where = InHypValueOnly then
errorlabstrm "" (pr_id id ++ str "has no value.");
(id,None,redfun' ty)
@@ -243,7 +243,7 @@ let bind_red_expr_occurrences occs nbcl redexp =
if nbcl > 1 && has_at_clause redexp then
error_illegal_non_atomic_clause ()
else
- redexp
+ redexp
else
match redexp with
| Unfold (_::_::_) ->
@@ -272,31 +272,31 @@ let bind_red_expr_occurrences occs nbcl redexp =
assert false
(* The following two tactics apply an arbitrary
- reduction function either to the conclusion or to a
+ reduction function either to the conclusion or to a
certain hypothesis *)
-let reduct_in_concl (redfun,sty) gl =
+let reduct_in_concl (redfun,sty) gl =
convert_concl_no_check (pf_reduce redfun gl (pf_concl gl)) sty gl
let reduct_in_hyp redfun (id,where) gl =
convert_hyp_no_check
- (pf_reduce_decl redfun where (pf_get_hyp gl id) gl) gl
+ (pf_reduce_decl redfun where (pf_get_hyp gl id) gl) gl
let reduct_option redfun = function
- | Some id -> reduct_in_hyp (fst redfun) id
- | None -> reduct_in_concl redfun
+ | Some id -> reduct_in_hyp (fst redfun) id
+ | None -> reduct_in_concl redfun
(* Now we introduce different instances of the previous tacticals *)
let change_and_check cv_pb t env sigma c =
- if is_fconv cv_pb env sigma t c then
+ if is_fconv cv_pb env sigma t c then
t
- else
+ else
errorlabstrm "convert-check-hyp" (str "Not convertible.")
(* Use cumulativity only if changing the conclusion not a subterm *)
let change_on_subterm cv_pb t = function
| None -> change_and_check cv_pb t
- | Some occl -> contextually false occl (change_and_check Reduction.CONV t)
+ | Some occl -> contextually false occl (change_and_check Reduction.CONV t)
let change_in_concl occl t =
reduct_in_concl ((change_on_subterm Reduction.CUMUL t occl),DEFAULTcast)
@@ -334,8 +334,8 @@ let normalise_in_hyp = reduct_in_hyp compute
let normalise_option = reduct_option (compute,DEFAULTcast)
let normalise_vm_in_concl = reduct_in_concl (Redexpr.cbv_vm,VMcast)
let unfold_in_concl loccname = reduct_in_concl (unfoldn loccname,DEFAULTcast)
-let unfold_in_hyp loccname = reduct_in_hyp (unfoldn loccname)
-let unfold_option loccname = reduct_option (unfoldn loccname,DEFAULTcast)
+let unfold_in_hyp loccname = reduct_in_hyp (unfoldn loccname)
+let unfold_option loccname = reduct_option (unfoldn loccname,DEFAULTcast)
let pattern_option l = reduct_option (pattern_occs l,DEFAULTcast)
(* A function which reduces accordingly to a reduction expression,
@@ -369,7 +369,7 @@ let reduce redexp cl goal =
(* Unfolding occurrences of a constant *)
-let unfold_constr = function
+let unfold_constr = function
| ConstRef sp -> unfold_in_concl [all_occurrences,EvalConstRef sp]
| VarRef id -> unfold_in_concl [all_occurrences,EvalVarRef id]
| _ -> errorlabstrm "unfold_constr" (str "Cannot unfold a non-constant.")
@@ -394,7 +394,7 @@ let default_id env sigma = function
| (name,Some b,_) -> id_of_name_using_hdchar env b name
(* Non primitive introduction tactics are treated by central_intro
- There is possibly renaming, with possibly names to avoid and
+ There is possibly renaming, with possibly names to avoid and
possibly a move to do after the introduction *)
type intro_name_flag =
@@ -403,11 +403,11 @@ type intro_name_flag =
| IntroMustBe of identifier
let find_name loc decl gl = function
- | IntroAvoid idl ->
+ | IntroAvoid idl ->
(* this case must be compatible with [find_intro_names] below. *)
let id = fresh_id idl (default_id (pf_env gl) gl.sigma decl) gl in id
| IntroBasedOn (id,idl) -> fresh_id idl id gl
- | IntroMustBe id ->
+ | IntroMustBe id ->
let id' = fresh_id [] id gl in
if id'<>id then user_err_loc (loc,"",pr_id id ++ str" is already used.");
id'
@@ -417,16 +417,16 @@ let find_name loc decl gl = function
iteration of [find_name] above. As [default_id] checks the sort of
the type to build hyp names, we maintain an environment to be able
to type dependent hyps. *)
-let find_intro_names ctxt gl =
- let _, res = List.fold_right
- (fun decl acc ->
+let find_intro_names ctxt gl =
+ let _, res = List.fold_right
+ (fun decl acc ->
let wantedname,x,typdecl = decl in
let env,idl = acc in
let name = fresh_id idl (default_id env gl.sigma decl) gl in
let newenv = push_rel (wantedname,x,typdecl) env in
(newenv,(name::idl)))
ctxt (pf_env gl , []) in
- List.rev res
+ List.rev res
let build_intro_tac id = function
| MoveToEnd true -> introduction id
@@ -439,7 +439,7 @@ let rec intro_gen loc name_flag move_flag force_flag dep_flag gl =
| LetIn (name,b,t,u) when not dep_flag or (dependent (mkRel 1) u) ->
build_intro_tac (find_name loc (name,Some b,t) gl name_flag) move_flag
gl
- | _ ->
+ | _ ->
if not force_flag then raise (RefinerError IntroNeedsProduct);
try
tclTHEN try_red_in_concl
@@ -481,14 +481,14 @@ let thin_for_replacing l gl =
| Evarutil.OccurHypInSimpleClause None ->
errorlabstrm ""
(str "Cannot change " ++ pr_id id ++ str ", it is used in conclusion.")
- | Evarutil.OccurHypInSimpleClause (Some id') ->
+ | Evarutil.OccurHypInSimpleClause (Some id') ->
errorlabstrm ""
- (str "Cannot change " ++ pr_id id ++
+ (str "Cannot change " ++ pr_id id ++
strbrk ", it is used in hypothesis " ++ pr_id id' ++ str".")
| Evarutil.EvarTypingBreak ev ->
errorlabstrm ""
- (str "Cannot change " ++ pr_id id ++
- strbrk " without breaking the typing of " ++
+ (str "Cannot change " ++ pr_id id ++
+ strbrk " without breaking the typing of " ++
Printer.pr_existential (pf_env gl) ev ++ str".")
let intro_replacing id gl =
@@ -496,13 +496,13 @@ let intro_replacing id gl =
tclTHENLIST
[thin_for_replacing [id]; introduction id; move_hyp true id next_hyp] gl
-let intros_replacing ids gl =
+let intros_replacing ids gl =
let rec introrec = function
| [] -> tclIDTAC
| id::tl ->
tclTHEN (tclORELSE (intro_replacing id) (intro_using id))
(introrec tl)
- in
+ in
introrec ids gl
(* User-level introduction tactics *)
@@ -520,8 +520,8 @@ let pf_lookup_hypothesis_as_renamed_gen red h gl =
let rec aux ccl =
match pf_lookup_hypothesis_as_renamed env ccl h with
| None when red ->
- aux
- ((fst (Redexpr.reduction_of_red_expr (Red true)))
+ aux
+ ((fst (Redexpr.reduction_of_red_expr (Red true)))
env (project gl) ccl)
| x -> x
in
@@ -534,7 +534,7 @@ let is_quantified_hypothesis id g =
| None -> false
let msg_quantified_hypothesis = function
- | NamedHyp id ->
+ | NamedHyp id ->
str "quantified hypothesis named " ++ pr_id id
| AnonHyp n ->
int n ++ str (match n with 1 -> "st" | 2 -> "nd" | _ -> "th") ++
@@ -544,7 +544,7 @@ let depth_of_quantified_hypothesis red h gl =
match pf_lookup_hypothesis_as_renamed_gen red h gl with
| Some depth -> depth
| None ->
- errorlabstrm "lookup_quantified_hypothesis"
+ errorlabstrm "lookup_quantified_hypothesis"
(str "No " ++ msg_quantified_hypothesis h ++
strbrk " in current goal" ++
(if red then strbrk " even after head-reduction" else mt ()) ++
@@ -579,8 +579,8 @@ let dependent_in_decl a (_,c,t) =
or a term with bindings *)
let onInductionArg tac = function
- | ElimOnConstr (c,lbindc as cbl) ->
- if isVar c & lbindc = NoBindings then
+ | ElimOnConstr (c,lbindc as cbl) ->
+ if isVar c & lbindc = NoBindings then
tclTHEN (tclTRY (intros_until_id (destVar c))) (tac cbl)
else
tac cbl
@@ -596,11 +596,11 @@ let onInductionArg tac = function
let apply_type hdcty argl gl =
refine (applist (mkCast (Evarutil.mk_new_meta(),DEFAULTcast, hdcty),argl)) gl
-
+
let apply_term hdc argl gl =
refine (applist (hdc,argl)) gl
-let bring_hyps hyps =
+let bring_hyps hyps =
if hyps = [] then Refiner.tclIDTAC
else
(fun gl ->
@@ -634,15 +634,15 @@ let cut_intro t = tclTHENFIRST (cut t) intro
(* cut_replacing échoue si l'hypothèse à remplacer apparaît dans le
but, ou dans une autre hypothèse *)
-let cut_replacing id t tac =
+let cut_replacing id t tac =
tclTHENLAST (internal_cut_rev_replace id t)
(tac (refine_no_check (mkVar id)))
-let cut_in_parallel l =
+let cut_in_parallel l =
let rec prec = function
- | [] -> tclIDTAC
+ | [] -> tclIDTAC
| h::t -> tclTHENFIRST (cut h) (prec t)
- in
+ in
prec (List.rev l)
let error_uninstantiated_metas t clenv =
@@ -652,13 +652,13 @@ let error_uninstantiated_metas t clenv =
let clenv_refine_in with_evars ?(with_classes=true) id clenv gl =
let clenv = clenv_pose_dependent_evars with_evars clenv in
- let clenv =
- if with_classes then
+ let clenv =
+ if with_classes then
{ clenv with evd = Typeclasses.resolve_typeclasses ~fail:(not with_evars) clenv.env clenv.evd }
else clenv
in
let new_hyp_typ = clenv_type clenv in
- if not with_evars & occur_meta new_hyp_typ then
+ if not with_evars & occur_meta new_hyp_typ then
error_uninstantiated_metas new_hyp_typ clenv;
let new_hyp_prf = clenv_value clenv in
tclTHEN
@@ -672,40 +672,40 @@ let clenv_refine_in with_evars ?(with_classes=true) id clenv gl =
(********************************************)
let last_arg c = match kind_of_term c with
- | App (f,cl) ->
+ | App (f,cl) ->
array_last cl
| _ -> anomaly "last_arg"
let elim_flags = {
- modulo_conv_on_closed_terms = Some full_transparent_state;
+ modulo_conv_on_closed_terms = Some full_transparent_state;
use_metas_eagerly = true;
modulo_delta = empty_transparent_state;
resolve_evars = false;
use_evars_pattern_unification = true;
}
-let elimination_clause_scheme with_evars allow_K elimclause indclause gl =
- let indmv =
+let elimination_clause_scheme with_evars allow_K elimclause indclause gl =
+ let indmv =
(match kind_of_term (last_arg elimclause.templval.rebus) with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
- (str "The type of elimination clause is not well-formed."))
+ (str "The type of elimination clause is not well-formed."))
in
- let elimclause' = clenv_fchain ~flags:elim_flags indmv elimclause indclause in
+ let elimclause' = clenv_fchain ~flags:elim_flags indmv elimclause indclause in
res_pf elimclause' ~with_evars:with_evars ~allow_K:allow_K ~flags:elim_flags
gl
-(*
- * Elimination tactic with bindings and using an arbitrary
- * elimination constant called elimc. This constant should end
+(*
+ * Elimination tactic with bindings and using an arbitrary
+ * elimination constant called elimc. This constant should end
* with a clause (x:I)(P .. ), where P is a bound variable.
- * The term c is of type t, which is a product ending with a type
- * matching I, lbindc are the expected terms for c arguments
+ * The term c is of type t, which is a product ending with a type
+ * matching I, lbindc are the expected terms for c arguments
*)
let general_elim_clause_gen elimtac indclause (elimc,lbindelimc) gl =
let elimt = pf_type_of gl elimc in
- let elimclause = make_clenv_binding gl (elimc,elimt) lbindelimc in
+ let elimclause = make_clenv_binding gl (elimc,elimt) lbindelimc in
elimtac elimclause indclause gl
let general_elim_clause elimtac (c,lbindc) (elimc,lbindelimc) gl =
@@ -717,14 +717,14 @@ let general_elim_clause elimtac (c,lbindc) (elimc,lbindelimc) gl =
let general_elim with_evars c e ?(allow_K=true) =
general_elim_clause (elimination_clause_scheme with_evars allow_K) c e
-(* Elimination tactic with bindings but using the default elimination
+(* Elimination tactic with bindings but using the default elimination
* constant associated with the type. *)
let find_eliminator c gl =
let (ind,t) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
lookup_eliminator ind (elimination_sort_of_goal gl)
-let default_elim with_evars (c,_ as cx) gl =
+let default_elim with_evars (c,_ as cx) gl =
general_elim with_evars cx (find_eliminator c gl,NoBindings) gl
let elim_in_context with_evars c = function
@@ -759,20 +759,20 @@ let clenv_fchain_in id elim_flags mv elimclause hypclause =
raise (PretypeError (env,NoOccurrenceFound (op,Some id)))
let elimination_in_clause_scheme with_evars id elimclause indclause gl =
- let (hypmv,indmv) =
+ let (hypmv,indmv) =
match clenv_independent elimclause with
[k1;k2] -> (k1,k2)
| _ -> errorlabstrm "elimination_clause"
(str "The type of elimination clause is not well-formed.") in
- let elimclause' = clenv_fchain indmv elimclause indclause in
+ let elimclause' = clenv_fchain indmv elimclause indclause in
let hyp = mkVar id in
let hyp_typ = pf_type_of gl hyp in
let hypclause = mk_clenv_from_n gl (Some 0) (hyp, hyp_typ) in
- let elimclause'' =
+ let elimclause'' =
clenv_fchain_in id elim_flags hypmv elimclause' hypclause in
let new_hyp_typ = clenv_type elimclause'' in
if eq_constr hyp_typ new_hyp_typ then
- errorlabstrm "general_rewrite_in"
+ errorlabstrm "general_rewrite_in"
(str "Nothing to rewrite in " ++ pr_id id ++ str".");
clenv_refine_in with_evars id elimclause'' gl
@@ -784,9 +784,9 @@ let general_elim_in with_evars id =
let general_case_analysis_in_context with_evars (c,lbindc) gl =
let (mind,_) = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in
let sort = elimination_sort_of_goal gl in
- let case =
+ let case =
if occur_term c (pf_concl gl) then make_case_dep else make_case_gen in
- let elim = pf_apply case gl mind sort in
+ let elim = pf_apply case gl mind sort in
general_elim with_evars (c,lbindc) (elim,NoBindings) gl
let general_case_analysis with_evars (c,lbindc as cx) =
@@ -799,7 +799,7 @@ let general_case_analysis with_evars (c,lbindc as cx) =
let simplest_case c = general_case_analysis false (c,NoBindings)
-(* Apply a tactic below the products of the conclusion of a lemma *)
+(* Apply a tactic below the products of the conclusion of a lemma *)
let descend_in_conjunctions with_evars tac exit c gl =
try
@@ -830,18 +830,18 @@ let descend_in_conjunctions with_evars tac exit c gl =
let check_evars sigma evm gl =
let origsigma = gl.sigma in
- let rest =
- Evd.fold (fun ev evi acc ->
- if not (Evd.mem origsigma ev) && not (Evd.is_defined sigma ev)
+ let rest =
+ Evd.fold (fun ev evi acc ->
+ if not (Evd.mem origsigma ev) && not (Evd.is_defined sigma ev)
then Evd.add acc ev evi else acc)
evm Evd.empty
- in
+ in
if rest <> Evd.empty then
- errorlabstrm "apply" (str"Uninstantiated existential variables: " ++
+ errorlabstrm "apply" (str"Uninstantiated existential variables: " ++
fnl () ++ pr_evar_defs rest)
let general_apply with_delta with_destruct with_evars (loc,(c,lbind)) gl0 =
- let flags =
+ let flags =
if with_delta then default_unify_flags else default_no_delta_unify_flags in
(* The actual type of the theorem. It will be matched against the
goal. If this fails, then the head constant will be unfolded step by
@@ -861,13 +861,13 @@ let general_apply with_delta with_destruct with_evars (loc,(c,lbind)) gl0 =
try try_apply thm_ty0 concl_nprod
with PretypeError _|RefinerError _|UserError _|Failure _ as exn ->
let rec try_red_apply thm_ty =
- try
+ try
(* Try to head-reduce the conclusion of the theorem *)
let red_thm = try_red_product (pf_env gl) (project gl) thm_ty in
try try_apply red_thm concl_nprod
with PretypeError _|RefinerError _|UserError _|Failure _ ->
try_red_apply red_thm
- with Redelimination ->
+ with Redelimination ->
(* Last chance: if the head is a variable, apply may try
second order unification *)
try if concl_nprod <> 0 then try_apply thm_ty 0 else raise Exit
@@ -877,7 +877,7 @@ let general_apply with_delta with_destruct with_evars (loc,(c,lbind)) gl0 =
try_main_apply (fun _ -> Stdpp.raise_with_loc loc exn) c gl
else
Stdpp.raise_with_loc loc exn
- in try_red_apply thm_ty0
+ in try_red_apply thm_ty0
in
if evm = Evd.empty then try_main_apply with_destruct c gl0
else
@@ -889,7 +889,7 @@ let rec apply_with_ebindings_gen b e = function
| [] ->
tclIDTAC
| [cb] -> general_apply b b e cb
- | cb::cbl ->
+ | cb::cbl ->
tclTHENLAST (general_apply b b e cb) (apply_with_ebindings_gen b e cbl)
let apply_with_ebindings cb = apply_with_ebindings_gen false false [dloc,cb]
@@ -907,7 +907,7 @@ let apply c =
let eapply c =
eapply_with_ebindings (inj_open c,NoBindings)
-let apply_list = function
+let apply_list = function
| c::l -> apply_with_bindings (c,ImplicitBindings l)
| _ -> assert false
@@ -943,12 +943,12 @@ let apply_in_once_main flags innerclause (d,lbind) gl =
try progress_with_clause flags innerclause clause
with err ->
try aux (clenv_push_prod clause)
- with NotExtensibleClause -> raise err in
+ with NotExtensibleClause -> raise err in
aux (make_clenv_binding gl (d,thm) lbind)
-let apply_in_once with_delta with_destruct with_evars id
+let apply_in_once with_delta with_destruct with_evars id
(loc,((sigma,d),lbind)) gl0 =
- let flags =
+ let flags =
if with_delta then default_unify_flags else default_no_delta_unify_flags in
let t' = pf_get_hyp_typ gl0 id in
let innerclause = mk_clenv_from_n gl0 (Some 0) (mkVar id,t') in
@@ -986,7 +986,7 @@ let apply_in_once with_delta with_destruct with_evars id
*)
let cut_and_apply c gl =
- let goal_constr = pf_concl gl in
+ let goal_constr = pf_concl gl in
match kind_of_term (pf_hnf_constr gl (pf_type_of gl c)) with
| Prod (_,c1,c2) when not (dependent (mkRel 1) c2) ->
tclTHENLAST
@@ -1001,14 +1001,14 @@ let cut_and_apply c gl =
let exact_check c gl =
let concl = (pf_concl gl) in
let ct = pf_type_of gl c in
- if pf_conv_x_leq gl ct concl then
- refine_no_check c gl
- else
+ if pf_conv_x_leq gl ct concl then
+ refine_no_check c gl
+ else
error "Not an exact proof."
let exact_no_check = refine_no_check
-let vm_cast_no_check c gl =
+let vm_cast_no_check c gl =
let concl = pf_concl gl in
refine_no_check (Term.mkCast(c,Term.VMcast,concl)) gl
@@ -1016,16 +1016,16 @@ let vm_cast_no_check c gl =
let exact_proof c gl =
(* on experimente la synthese d'ise dans exact *)
let c = Constrintern.interp_casted_constr (project gl) (pf_env gl) c (pf_concl gl)
- in refine_no_check c gl
+ in refine_no_check c gl
let (assumption : tactic) = fun gl ->
- let concl = pf_concl gl in
+ let concl = pf_concl gl in
let hyps = pf_hyps gl in
let rec arec only_eq = function
- | [] ->
+ | [] ->
if only_eq then arec false hyps else error "No such assumption."
- | (id,c,t)::rest ->
- if (only_eq & eq_constr t concl)
+ | (id,c,t)::rest ->
+ if (only_eq & eq_constr t concl)
or (not only_eq & pf_conv_x_leq gl t concl)
then refine_no_check (mkVar id) gl
else arec only_eq rest
@@ -1037,9 +1037,9 @@ let (assumption : tactic) = fun gl ->
(*****************************************************************)
(* This tactic enables the user to remove hypotheses from the signature.
- * Some care is taken to prevent him from removing variables that are
- * subsequently used in other hypotheses or in the conclusion of the
- * goal. *)
+ * Some care is taken to prevent him from removing variables that are
+ * subsequently used in other hypotheses or in the conclusion of the
+ * goal. *)
let clear ids = (* avant seul dyn_clear n'echouait pas en [] *)
if ids=[] then tclIDTAC else thin ids
@@ -1055,7 +1055,7 @@ let clear_wildcards ids =
(error_clear_dependency (pf_env gl) (id_of_string "_") err))
ids
-(* Takes a list of booleans, and introduces all the variables
+(* Takes a list of booleans, and introduces all the variables
* quantified in the goal which are associated with a value
* true in the boolean list. *)
@@ -1069,38 +1069,38 @@ let rec intros_clearing = function
(* Modifying/Adding an hypothesis *)
let specialize mopt (c,lbind) g =
- let evars, term =
- if lbind = NoBindings then None, c
- else
+ let evars, term =
+ if lbind = NoBindings then None, c
+ else
let clause = make_clenv_binding g (c,pf_type_of g c) lbind in
let clause = clenv_unify_meta_types clause in
let (thd,tstack) =
whd_stack clause.evd (clenv_value clause) in
let nargs = List.length tstack in
- let tstack = match mopt with
- | Some m ->
+ let tstack = match mopt with
+ | Some m ->
if m < nargs then list_firstn m tstack else tstack
- | None ->
- let rec chk = function
+ | None ->
+ let rec chk = function
| [] -> []
| t::l -> if occur_meta t then [] else t :: chk l
in chk tstack
- in
- let term = applist(thd,tstack) in
+ in
+ let term = applist(thd,tstack) in
if occur_meta term then
errorlabstrm "" (str "Cannot infer an instance for " ++
pr_name (meta_name clause.evd (List.hd (collect_metas term))) ++
str ".");
Some clause.evd, term
in
- tclTHEN
+ tclTHEN
(match evars with Some e -> tclEVARS e | _ -> tclIDTAC)
(match kind_of_term (fst(decompose_app (snd(decompose_lam_assum c)))) with
| Var id when List.mem id (pf_ids_of_hyps g) ->
tclTHENFIRST
(fun g -> internal_cut_replace id (pf_type_of g term) g)
(exact_no_check term)
- | _ -> tclTHENLAST
+ | _ -> tclTHENLAST
(fun g -> cut (pf_type_of g term) g)
(exact_no_check term))
g
@@ -1126,7 +1126,7 @@ let keep hyps gl =
let check_number_of_constructors expctdnumopt i nconstr =
if i=0 then error "The constructors are numbered starting from 1.";
- begin match expctdnumopt with
+ begin match expctdnumopt with
| Some n when n <> nconstr ->
error ("Not an inductive goal with "^
string_of_int n^plural n " constructor"^".")
@@ -1135,20 +1135,20 @@ let check_number_of_constructors expctdnumopt i nconstr =
if i > nconstr then error "Not enough constructors."
let constructor_tac with_evars expctdnumopt i lbind gl =
- let cl = pf_concl gl in
- let (mind,redcl) = pf_reduce_to_quantified_ind gl cl in
+ let cl = pf_concl gl in
+ let (mind,redcl) = pf_reduce_to_quantified_ind gl cl in
let nconstr =
Array.length (snd (Global.lookup_inductive mind)).mind_consnames in
check_number_of_constructors expctdnumopt i nconstr;
let cons = mkConstruct (ith_constructor_of_inductive mind i) in
let apply_tac =
general_apply true false with_evars (dloc,(inj_open cons,lbind)) in
- (tclTHENLIST
+ (tclTHENLIST
[convert_concl_no_check redcl DEFAULTcast; intros; apply_tac]) gl
let one_constructor i = constructor_tac false None i
-(* Try to apply the constructor of the inductive definition followed by
+(* Try to apply the constructor of the inductive definition followed by
a tactic t given as an argument.
Should be generalize in Constructor (Fun c : I -> tactic)
*)
@@ -1161,7 +1161,7 @@ let any_constructor with_evars tacopt gl =
if nconstr = 0 then error "The type has no constructors.";
tclFIRST
(List.map
- (fun i -> tclTHEN (constructor_tac with_evars None i NoBindings) t)
+ (fun i -> tclTHEN (constructor_tac with_evars None i NoBindings) t)
(interval 1 nconstr)) gl
let left_with_ebindings with_evars = constructor_tac with_evars (Some 2) 1
@@ -1246,9 +1246,9 @@ let rewrite_hyp l2r id gl =
let rec explicit_intro_names = function
| (_, IntroIdentifier id) :: l ->
id :: explicit_intro_names l
-| (_, (IntroWildcard | IntroAnonymous | IntroFresh _
+| (_, (IntroWildcard | IntroAnonymous | IntroFresh _
| IntroRewrite _ | IntroForthcoming _)) :: l -> explicit_intro_names l
-| (_, IntroOrAndPattern ll) :: l' ->
+| (_, IntroOrAndPattern ll) :: l' ->
List.flatten (List.map (fun l -> explicit_intro_names (l@l')) ll)
| [] ->
[]
@@ -1259,7 +1259,7 @@ let rec explicit_intro_names = function
the tactic, for the hyps to clear *)
let rec intros_patterns b avoid thin destopt = function
| (loc, IntroWildcard) :: l ->
- tclTHEN
+ tclTHEN
(intro_gen loc (IntroAvoid(avoid@explicit_intro_names l))
no_move true false)
(onLastHypId (fun id ->
@@ -1292,7 +1292,7 @@ let rec intros_patterns b avoid thin destopt = function
(intro_or_and_pattern loc b ll l'
(intros_patterns b avoid thin destopt)))
| (loc, IntroRewrite l2r) :: l ->
- tclTHEN
+ tclTHEN
(intro_gen loc (IntroAvoid(avoid@explicit_intro_names l))
no_move true false)
(onLastHypId (fun id ->
@@ -1305,7 +1305,7 @@ let intros_pattern = intros_patterns false [] []
let intro_pattern destopt pat = intros_patterns false [] [] destopt [dloc,pat]
-let intro_patterns = function
+let intro_patterns = function
| [] -> tclREPEAT intro
| l -> intros_pattern no_move l
@@ -1322,12 +1322,12 @@ let prepare_intros s ipat gl = match ipat with
| IntroAnonymous -> make_id s gl, tclIDTAC
| IntroFresh id -> fresh_id [] id gl, tclIDTAC
| IntroWildcard -> let id = make_id s gl in id, clear_wildcards [dloc,id]
- | IntroRewrite l2r ->
+ | IntroRewrite l2r ->
let id = make_id s gl in
id, !forward_general_multi_rewrite l2r false (inj_open (mkVar id),NoBindings) allHypsAndConcl
| IntroOrAndPattern ll -> make_id s gl,
onLastHypId
- (intro_or_and_pattern loc true ll []
+ (intro_or_and_pattern loc true ll []
(intros_patterns true [] [] no_move))
| IntroForthcoming _ -> user_err_loc
(loc,"",str "Introduction pattern for one hypothesis expected")
@@ -1357,13 +1357,13 @@ let assert_tac na = assert_as true (ipat_of_name na)
(* apply in as *)
let as_tac id ipat = match ipat with
- | Some (loc,IntroRewrite l2r) ->
+ | Some (loc,IntroRewrite l2r) ->
!forward_general_multi_rewrite l2r false (inj_open (mkVar id),NoBindings) allHypsAndConcl
| Some (loc,IntroOrAndPattern ll) ->
intro_or_and_pattern loc true ll [] (intros_patterns true [] [] no_move)
id
| Some (loc,
- (IntroIdentifier _ | IntroAnonymous | IntroFresh _ |
+ (IntroIdentifier _ | IntroAnonymous | IntroFresh _ |
IntroWildcard | IntroForthcoming _)) ->
user_err_loc (loc,"", str "Disjunctive/conjunctive pattern expected")
| None -> tclIDTAC
@@ -1376,7 +1376,7 @@ let general_apply_in with_delta with_destruct with_evars id lemmas ipat gl =
let apply_in simple with_evars = general_apply_in simple simple with_evars
-let simple_apply_in id c =
+let simple_apply_in id c =
apply_in false false id [dloc,((Evd.empty,c),NoBindings)] None
(**************************)
@@ -1386,16 +1386,16 @@ let simple_apply_in id c =
let generalized_name c t ids cl = function
| Name id as na ->
if List.mem id ids then
- errorlabstrm "" (pr_id id ++ str " is already used");
+ errorlabstrm "" (pr_id id ++ str " is already used");
na
- | Anonymous ->
+ | Anonymous ->
match kind_of_term c with
| Var id ->
(* Keep the name even if not occurring: may be used by intros later *)
Name id
| _ ->
if noccurn 1 cl then Anonymous else
- (* On ne s'etait pas casse la tete : on avait pris pour nom de
+ (* On ne s'etait pas casse la tete : on avait pris pour nom de
variable la premiere lettre du type, meme si "c" avait ete une
constante dont on aurait pu prendre directement le nom *)
named_hd (Global.env()) t Anonymous
@@ -1415,9 +1415,9 @@ let generalize_dep c gl =
let init_ids = ids_of_named_context (Global.named_context()) in
let rec seek d toquant =
if List.exists (fun (id,_,_) -> occur_var_in_decl env id d) toquant
- or dependent_in_decl c d then
+ or dependent_in_decl c d then
d::toquant
- else
+ else
toquant in
let to_quantify = Sign.fold_named_context seek sign ~init:[] in
let to_quantify_rev = List.rev to_quantify in
@@ -1445,7 +1445,7 @@ let generalize_gen lconstr gl =
let generalize l =
generalize_gen (List.map (fun c -> ((all_occurrences,c),Anonymous)) l)
-let revert hyps gl =
+let revert hyps gl =
tclTHEN (generalize (List.map mkVar hyps)) (clear hyps) gl
(* Faudra-t-il une version avec plusieurs args de generalize_dep ?
@@ -1454,7 +1454,7 @@ Cela peut-être troublant de faire "Generalize Dependent H n" dans
généralisation dépendante par n.
let quantify lconstr =
- List.fold_right
+ List.fold_right
(fun com tac -> tclTHEN tac (tactic_com generalize_dep c))
lconstr
tclIDTAC
@@ -1520,13 +1520,13 @@ let letin_abstract id c occs gl =
if not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else raise Not_found
- else
+ else
(subst1_named_decl (mkVar id) newdecl, true)
- with Not_found ->
+ with Not_found ->
(d,List.exists
(fun ((id,_,_),dep) -> dep && occur_var_in_decl env id d) ctxt)
in d'::ctxt
- in
+ in
let ctxt' = fold_named_context compute_dependency env ~init:[] in
let compute_marks ((depdecls,marks as accu),lhyp) ((hyp,_,_) as d,b) =
if b then ((d::depdecls,(hyp,lhyp)::marks), lhyp)
@@ -1544,7 +1544,7 @@ let letin_tac with_eq name c occs gl =
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared") in
- let (depdecls,marks,ccl)= letin_abstract id c occs gl in
+ let (depdecls,marks,ccl)= letin_abstract id c occs gl in
let t = pf_type_of gl c in
let tmpcl = List.fold_right mkNamedProd_or_LetIn depdecls ccl in
let args = Array.to_list (instance_from_named_context depdecls) in
@@ -1569,11 +1569,11 @@ let letin_abstract id c (occs,check_occs) gl =
| Some occ ->
let newdecl = subst_term_occ_decl occ c d in
if occ = (all_occurrences,InHyp) & d = newdecl then
- if check_occs & not (in_every_hyp occs)
+ if check_occs & not (in_every_hyp occs)
then raise (RefinerError (DoesNotOccurIn (c,hyp)))
else depdecls
- else
- (subst1_named_decl (mkVar id) newdecl)::depdecls in
+ else
+ (subst1_named_decl (mkVar id) newdecl)::depdecls in
let depdecls = fold_named_context compute_dependency env ~init:[] in
let ccl = match occurrences_of_goal occs with
| None -> pf_concl gl
@@ -1588,7 +1588,7 @@ let letin_tac_gen with_eq name c ty occs gl =
if name = Anonymous then fresh_id [] x gl else
if not (mem_named_context x (pf_hyps gl)) then x else
error ("The variable "^(string_of_id x)^" is already declared.") in
- let (depdecls,lastlhyp,ccl)= letin_abstract id c occs gl in
+ let (depdecls,lastlhyp,ccl)= letin_abstract id c occs gl in
let t = match ty with Some t -> t | None -> pf_type_of gl c in
let newcl,eq_tac = match with_eq with
| Some (lr,(loc,ido)) ->
@@ -1619,10 +1619,10 @@ let letin_tac with_eq name c ty occs =
(* Tactics "pose proof" (usetac=None) and "assert" (otherwise) *)
let forward usetac ipat c gl =
match usetac with
- | None ->
+ | None ->
let t = pf_type_of gl c in
tclTHENFIRST (assert_as true ipat t) (exact_no_check c) gl
- | Some tac ->
+ | Some tac ->
tclTHENFIRST (assert_as true ipat c) tac gl
let pose_proof na c = forward None (ipat_of_name na) c
@@ -1663,7 +1663,7 @@ let unfold_all x gl =
(*
* A "natural" induction tactic
- *
+ *
- [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal
- [hyp0] is the induction hypothesis
- we extract from [args] the variables which are not rigid parameters
@@ -1695,13 +1695,13 @@ let unfold_all x gl =
let check_unused_names names =
if names <> [] & Flags.is_verbose () then
- msg_warning
+ msg_warning
(str"Unused introduction " ++ str (plural (List.length names) "pattern")
++ str": " ++ prlist_with_sep spc pr_intro_pattern names)
let rec first_name_buggy avoid gl (loc,pat) = match pat with
| IntroOrAndPattern [] -> no_move
- | IntroOrAndPattern ([]::l) ->
+ | IntroOrAndPattern ([]::l) ->
first_name_buggy avoid gl (loc,IntroOrAndPattern l)
| IntroOrAndPattern ((p::_)::_) -> first_name_buggy avoid gl p
| IntroWildcard -> no_move
@@ -1766,7 +1766,7 @@ let induct_discharge statuslists destopt avoid' (avoid,ra) names gl =
(peel_tac ra' names tophyp) gl
| (RecArg,dep,recvarname) :: ra' ->
let pat,names = consume_pattern avoid recvarname dep gl names in
- tclTHEN (intros_patterns true avoid [] (update destopt tophyp) [pat])
+ tclTHEN (intros_patterns true avoid [] (update destopt tophyp) [pat])
(peel_tac ra' names tophyp) gl
| (OtherArg,_,_) :: ra' ->
let pat,names = match names with
@@ -1816,7 +1816,7 @@ let atomize_param_of_ind (indref,nparams) hyp0 gl =
tclTHEN
(letin_tac None (Name x) c None allHypsAndConcl)
(atomize_one (i-1) ((mkVar x)::avoid)) gl
- else
+ else
tclIDTAC gl
in
atomize_one (List.length argl) params gl
@@ -1834,7 +1834,7 @@ let find_atomic_param_of_ind nparams indtyp =
| _ -> ()
done;
Idset.elements !indvars;
-
+
(* [cook_sign] builds the lists [indhyps] of hyps that must be
erased, the lists of hyps to be generalize [(hdeps,tdeps)] on the
@@ -1853,7 +1853,7 @@ let find_atomic_param_of_ind nparams indtyp =
To summarize, the situation looks like this
Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat
- Left Right
+ Left Right
Induction hypothesis is H4 ([hyp0])
Variable parameters of (le O n) is the singleton list with "n" ([indvars])
@@ -1887,7 +1887,7 @@ let find_atomic_param_of_ind nparams indtyp =
would have posed no problem. But for uniformity, we decided to use
the right hyp for all hyps on the right of H4.
- Others solutions are welcome
+ Others solutions are welcome
PC 9 fev 06: Adapted to accept multi argument principle with no
main arg hyp. hyp0 is now optional, meaning that it is possible
@@ -1917,15 +1917,15 @@ let cook_sign hyp0_opt indvars env =
let before = ref true in
let seek_deps env (hyp,_,_ as decl) rhyp =
if hyp = hyp0 then begin
- before:=false;
+ before:=false;
(* If there was no main induction hypotheses, then hyp is one of
indvars too, so add it to indhyps. *)
- (if hyp0_opt=None then indhyps := hyp::!indhyps);
+ (if hyp0_opt=None then indhyps := hyp::!indhyps);
MoveToEnd false (* fake value *)
end else if List.mem hyp indvars then begin
(* warning: hyp can still occur after induction *)
(* e.g. if the goal (t hyp hyp0) with other occs of hyp in t *)
- indhyps := hyp::!indhyps;
+ indhyps := hyp::!indhyps;
rhyp
end else
if inhyps <> [] && List.mem hyp inhyps || inhyps = [] &&
@@ -1933,9 +1933,9 @@ let cook_sign hyp0_opt indvars env =
List.exists (fun (id,_,_) -> occur_var_in_decl env id decl) !decldeps)
then begin
decldeps := decl::!decldeps;
- if !before then
+ if !before then
rstatus := (hyp,rhyp)::!rstatus
- else
+ else
ldeps := hyp::!ldeps; (* status computed in 2nd phase *)
MoveBefore hyp end
else
@@ -1951,8 +1951,8 @@ let cook_sign hyp0_opt indvars env =
end else
if List.mem hyp !indhyps then lhyp else MoveAfter hyp
in
- try
- let _ =
+ try
+ let _ =
fold_named_context_reverse compute_lstatus ~init:(MoveToEnd true) env in
raise (Shunt (MoveToEnd true)) (* ?? FIXME *)
with Shunt lhyp0 ->
@@ -1963,7 +1963,7 @@ let cook_sign hyp0_opt indvars env =
(*
The general form of an induction principle is the following:
-
+
forall prm1 prm2 ... prmp, (induction parameters)
forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates)
branch1, branch2, ... , branchr, (branches of the principle)
@@ -1972,7 +1972,7 @@ let cook_sign hyp0_opt indvars env =
-> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion)
^^ ^^^^^^^^^^^^^^^^^^^^^^^^
optional optional argument added if
- even if HI principle generated by functional
+ even if HI principle generated by functional
present above induction, only if HI does not exist
[indarg] [farg]
@@ -1985,7 +1985,7 @@ let cook_sign hyp0_opt indvars env =
(* [rel_contexts] and [rel_declaration] actually contain triples, and
lists are actually in reverse order to fit [compose_prod]. *)
-type elim_scheme = {
+type elim_scheme = {
elimc: constr with_ebindings option;
elimt: types;
indref: global_reference option;
@@ -1994,19 +1994,19 @@ type elim_scheme = {
predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *)
npredicates: int; (* Number of predicates *)
branches: rel_context; (* branchr,...,branch1 *)
- nbranches: int; (* Number of branches *)
+ nbranches: int; (* Number of branches *)
args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *)
nargs: int; (* number of arguments *)
- indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni)
+ indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni)
if HI is in premisses, None otherwise *)
- concl: types; (* Qi x1...xni HI (f...), HI and (f...)
+ concl: types; (* Qi x1...xni HI (f...), HI and (f...)
are optional and mutually exclusive *)
indarg_in_concl: bool; (* true if HI appears at the end of conclusion *)
farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *)
}
-let empty_scheme =
- {
+let empty_scheme =
+ {
elimc = None;
elimt = mkProp;
indref = None;
@@ -2028,12 +2028,12 @@ let empty_scheme =
(* Unification between ((elimc:elimt) ?i ?j ?k ?l ... ?m) and the
hypothesis on which the induction is made *)
let induction_tac with_evars (varname,lbind) typ scheme gl =
- let elimc,lbindelimc =
+ let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle." in
let elimt = scheme.elimt in
let indclause = make_clenv_binding gl (mkVar varname,typ) lbind in
let elimclause =
- make_clenv_binding gl
+ make_clenv_binding gl
(mkCast (elimc,DEFAULTcast, elimt),elimt) lbindelimc in
elimination_clause_scheme with_evars true elimclause indclause gl
@@ -2047,12 +2047,12 @@ let make_base n id =
(* Builds two different names from an optional inductive type and a
number, also deals with a list of names to avoid. If the inductive
type is None, then hyprecname is IHi where i is a number. *)
-let make_up_names n ind_opt cname =
+let make_up_names n ind_opt cname =
let is_hyp = atompart_of_id cname = "H" in
let base = string_of_id (make_base n cname) in
let ind_prefix = "IH" in
- let base_ind =
- if is_hyp then
+ let base_ind =
+ if is_hyp then
match ind_opt with
| None -> id_of_string ind_prefix
| Some ind_id -> add_prefix ind_prefix (Nametab.basename_of_global ind_id)
@@ -2073,35 +2073,35 @@ let make_up_names n ind_opt cname =
let is_indhyp p n t =
let l, c = decompose_prod t in
- let c,_ = decompose_app c in
+ let c,_ = decompose_app c in
let p = p + List.length l in
match kind_of_term c with
| Rel k when p < k & k <= p + n -> true
| _ -> false
-let chop_context n l =
+let chop_context n l =
let rec chop_aux acc = function
| n, (_,Some _,_ as h :: t) -> chop_aux (h::acc) (n, t)
| 0, l2 -> (List.rev acc, l2)
| n, (h::t) -> chop_aux (h::acc) (n-1, t)
| _, [] -> anomaly "chop_context"
- in
+ in
chop_aux [] (n,l)
let error_ind_scheme s =
let s = if s <> "" then s^" " else s in
error ("Cannot recognize "^s^"an induction scheme.")
-let mkEq t x y =
+let mkEq t x y =
mkApp (build_coq_eq (), [| t; x; y |])
-
-let mkRefl t x =
+
+let mkRefl t x =
mkApp ((build_coq_eq_data ()).refl, [| t; x |])
let mkHEq t x u y =
mkApp (coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq",
[| t; x; u; y |])
-
+
let mkHRefl t x =
mkApp (coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq_refl",
[| t; x |])
@@ -2112,7 +2112,7 @@ let mkHRefl t x =
(* let ty = new_Type () in *)
(* mkApp (coq_constant "mkHEq" ["Logic";"EqdepFacts"] "eq_dep", *)
(* [| ty; mkApp (Lazy.force id, [|ty|]); t; x; u; y |]) *)
-
+
(* let mkHRefl t x = *)
(* let ty = new_Type () in *)
(* mkApp (coq_constant "mkHEq" ["Logic";"EqdepFacts"] "eq_dep_intro", *)
@@ -2125,21 +2125,21 @@ let lift_togethern n l =
(lift n x :: acc, succ n))
l ([], n)
in l'
-
+
let lift_together l = lift_togethern 0 l
let lift_list l = List.map (lift 1) l
-let ids_of_constr vars c =
- let rec aux vars c =
+let ids_of_constr vars c =
+ let rec aux vars c =
match kind_of_term c with
| Var id -> if List.mem id vars then vars else id :: vars
- | App (f, args) ->
+ | App (f, args) ->
(match kind_of_term f with
- | Construct (ind,_)
+ | Construct (ind,_)
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
- array_fold_left_from mib.Declarations.mind_nparams
+ array_fold_left_from mib.Declarations.mind_nparams
aux vars args
| _ -> fold_constr aux vars c)
| _ -> fold_constr aux vars c
@@ -2151,13 +2151,13 @@ let mk_term_eq env sigma ty t ty' t' =
else
mkHEq ty t ty' t', mkHRefl ty' t'
-let make_abstract_generalize gl id concl dep ctx c eqs args refls =
+let make_abstract_generalize gl id concl dep ctx c eqs args refls =
let meta = Evarutil.new_meta() in
let term, typ = mkVar id, pf_get_hyp_typ gl id (* de Bruijn closed! *) in
let eqslen = List.length eqs in
(* Abstract by the "generalized" hypothesis equality proof if necessary. *)
- let abshypeq, abshypt =
- if dep then
+ let abshypeq, abshypt =
+ if dep then
let eq, refl = mk_term_eq (push_rel_context ctx (pf_env gl)) (project gl) (lift 1 c) (mkRel 1) typ term in
mkProd (Anonymous, eq, lift 1 concl), [| refl |]
else concl, [||]
@@ -2170,7 +2170,7 @@ let make_abstract_generalize gl id concl dep ctx c eqs args refls =
(* Abstract by the extension of the context *)
let genctyp = it_mkProd_or_LetIn ~init:genarg ctx in
(* The goal will become this product. *)
- let genc = mkCast (mkMeta meta, DEFAULTcast, genctyp) in
+ let genc = mkCast (mkMeta meta, DEFAULTcast, genctyp) in
(* Apply the old arguments giving the proper instantiation of the hyp *)
let instc = mkApp (genc, Array.of_list args) in
(* Then apply to the original instanciated hyp. *)
@@ -2179,20 +2179,20 @@ let make_abstract_generalize gl id concl dep ctx c eqs args refls =
let appeqs = mkApp (instc, Array.of_list refls) in
(* Finaly, apply the reflexivity proof for the original hyp, to get a term of type gl again. *)
mkApp (appeqs, abshypt)
-
-let abstract_args gl id =
+
+let abstract_args gl id =
let c = pf_get_hyp_typ gl id in
let sigma = project gl in
let env = pf_env gl in
let concl = pf_concl gl in
let dep = dependent (mkVar id) concl in
let avoid = ref [] in
- let get_id name =
- let id = fresh_id !avoid (match name with Name n -> n | Anonymous -> id_of_string "gen_x") gl in
+ let get_id name =
+ let id = fresh_id !avoid (match name with Name n -> n | Anonymous -> id_of_string "gen_x") gl in
avoid := id :: !avoid; id
in
match kind_of_term c with
- App (f, args) ->
+ App (f, args) ->
(* Build application generalized w.r.t. the argument plus the necessary eqs.
From env |- c : forall G, T and args : G we build
(T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize)
@@ -2200,7 +2200,7 @@ let abstract_args gl id =
eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *)
*)
let aux (prod, ctx, ctxenv, c, args, eqs, refls, vars, env) arg =
- let (name, _, ty), arity =
+ let (name, _, ty), arity =
let rel, c = Reductionops.splay_prod_n env sigma 1 prod in
List.hd rel, c
in
@@ -2217,7 +2217,7 @@ let abstract_args gl id =
let c' = mkApp (lift 1 c, [|mkRel 1|]) in
let args = arg :: args in
let liftarg = lift (List.length ctx) arg in
- let eq, refl =
+ let eq, refl =
if convertible then
mkEq (lift 1 ty) (mkRel 1) liftarg, mkRefl argty arg
else
@@ -2227,10 +2227,10 @@ let abstract_args gl id =
let refls = refl :: refls in
let vars = ids_of_constr vars arg in
(arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, vars, env)
- in
+ in
let f, args =
match kind_of_term f with
- | Construct (ind,_)
+ | Construct (ind,_)
| Ind ind ->
let (mib,mip) = Global.lookup_inductive ind in
let first = mib.Declarations.mind_nparams in
@@ -2240,7 +2240,7 @@ let abstract_args gl id =
in
(match args with [||] -> None
| _ ->
- let arity, ctx, ctxenv, c', args, eqs, refls, vars, env =
+ let arity, ctx, ctxenv, c', args, eqs, refls, vars, env =
Array.fold_left aux (pf_type_of gl f,[],env,f,[],[],[],[],env) args
in
let args, refls = List.rev args, List.rev refls in
@@ -2254,22 +2254,22 @@ let abstract_generalize id ?(generalize_vars=true) gl =
let newc = abstract_args gl id in
match newc with
| None -> tclIDTAC gl
- | Some (newc, dep, n, vars) ->
+ | Some (newc, dep, n, vars) ->
let tac =
if dep then
- tclTHENLIST [refine newc; rename_hyp [(id, oldid)]; tclDO n intro;
- generalize_dep (mkVar oldid)]
+ tclTHENLIST [refine newc; rename_hyp [(id, oldid)]; tclDO n intro;
+ generalize_dep (mkVar oldid)]
else
tclTHENLIST [refine newc; clear [id]; tclDO n intro]
- in
- if generalize_vars then tclTHEN tac
+ in
+ if generalize_vars then tclTHEN tac
(tclFIRST [revert (List.rev vars) ;
tclMAP (fun id -> tclTRY (generalize_dep (mkVar id))) vars]) gl
else tac gl
-
+
let dependent_pattern c gl =
let cty = pf_type_of gl c in
- let deps =
+ let deps =
match kind_of_term cty with
| App (f, args) -> Array.to_list args
| _ -> []
@@ -2283,11 +2283,11 @@ let dependent_pattern c gl =
mkNamedLambda id cty conclvar
in
let subst = (c, varname c, cty) :: List.rev_map (fun c -> (c, varname c, pf_type_of gl c)) deps in
- let concllda = List.fold_left mklambda (pf_concl gl) subst in
+ let concllda = List.fold_left mklambda (pf_concl gl) subst in
let conclapp = applistc concllda (List.rev_map pi1 subst) in
convert_concl_no_check conclapp DEFAULTcast gl
-
-let occur_rel n c =
+
+let occur_rel n c =
let res = not (noccurn n c) in
res
@@ -2330,19 +2330,19 @@ let cut_list n l =
(* This function splits the products of the induction scheme [elimt] into four
- parts:
+ parts:
- branches, easily detectable (they are not referred by rels in the subterm)
- what was found before branches (acc1) that is: parameters and predicates
- what was found after branches (acc3) that is: args and indarg if any
if there is no branch, we try to fill in acc3 with args/indargs.
We also return the conclusion.
*)
-let decompose_paramspred_branch_args elimt =
+let decompose_paramspred_branch_args elimt =
let rec cut_noccur elimt acc2 : rel_context * rel_context * types =
match kind_of_term elimt with
- | Prod(nme,tpe,elimt') ->
+ | Prod(nme,tpe,elimt') ->
let hd_tpe,_ = decompose_app ((strip_prod_assum tpe)) in
- if not (occur_rel 1 elimt') && isRel hd_tpe
+ if not (occur_rel 1 elimt') && isRel hd_tpe
then cut_noccur elimt' ((nme,None,tpe)::acc2)
else let acc3,ccl = decompose_prod_assum elimt in acc2 , acc3 , ccl
| App(_, _) | Rel _ -> acc2 , [] , elimt
@@ -2361,7 +2361,7 @@ let decompose_paramspred_branch_args elimt =
we must find the predicate of the conclusion to separate params_pred from
args. We suppose there is only one predicate here. *)
if List.length acc2 <> 0 then acc1, acc2 , acc3, ccl
- else
+ else
let hyps,ccl = decompose_prod_assum elimt in
let hd_ccl_pred,_ = decompose_app ccl in
match kind_of_term hd_ccl_pred with
@@ -2379,7 +2379,7 @@ let exchange_hd_app subst_hd t =
eliminator by modifying their scheme_info, then rebuild the
eliminator type, then prove it (with tactics). *)
let rebuild_elimtype_from_scheme (scheme:elim_scheme): types =
- let hiconcl =
+ let hiconcl =
match scheme.indarg with
| None -> scheme.concl
| Some x -> mkProd_or_LetIn x scheme.concl in
@@ -2397,8 +2397,8 @@ exception NoLastArgCcl
first separate branches. We obtain branches, hyps before (params + preds),
hyps after (args <+ indarg if present>) and conclusion. Then we proceed as
follows:
-
- - separate parameters and predicates in params_preds. For that we build:
+
+ - separate parameters and predicates in params_preds. For that we build:
forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg
^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^
optional opt
@@ -2410,28 +2410,28 @@ exception NoLastArgCcl
- finish to fill in the elim_scheme: indarg/farg/args and finally indref. *)
let compute_elim_sig ?elimc elimt =
- let params_preds,branches,args_indargs,conclusion =
+ let params_preds,branches,args_indargs,conclusion =
decompose_paramspred_branch_args elimt in
-
+
let ccl = exchange_hd_app (mkVar (id_of_string "__QI_DUMMY__")) conclusion in
- let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in
+ let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in
let nparams = Intset.cardinal (free_rels concl_with_args) in
let preds,params = cut_list (List.length params_preds - nparams) params_preds in
-
+
(* A first approximation, further analysis will tweak it *)
let res = ref { empty_scheme with
(* This fields are ok: *)
elimc = elimc; elimt = elimt; concl = conclusion;
- predicates = preds; npredicates = List.length preds;
- branches = branches; nbranches = List.length branches;
+ predicates = preds; npredicates = List.length preds;
+ branches = branches; nbranches = List.length branches;
farg_in_concl = isApp ccl && isApp (last_arg ccl);
- params = params; nparams = nparams;
+ params = params; nparams = nparams;
(* all other fields are unsure at this point. Including these:*)
args = args_indargs; nargs = List.length args_indargs; } in
- try
+ try
(* Order of tests below is important. Each of them exits if successful. *)
(* 1- First see if (f x...) is in the conclusion. *)
- if !res.farg_in_concl
+ if !res.farg_in_concl
then begin
res := { !res with
indarg = None;
@@ -2439,19 +2439,19 @@ let compute_elim_sig ?elimc elimt =
raise Exit
end;
(* 2- If no args_indargs (=!res.nargs at this point) then no indarg *)
- if !res.nargs=0 then raise Exit;
+ if !res.nargs=0 then raise Exit;
(* 3- Look at last arg: is it the indarg? *)
ignore (
match List.hd args_indargs with
| hiname,Some _,hi -> error_ind_scheme ""
- | hiname,None,hi ->
+ | hiname,None,hi ->
let hi_ind, hi_args = decompose_app hi in
let hi_is_ind = (* hi est d'un type globalisable *)
match kind_of_term hi_ind with
- | Ind (mind,_) -> true
- | Var _ -> true
- | Const _ -> true
- | Construct _ -> true
+ | Ind (mind,_) -> true
+ | Var _ -> true
+ | Const _ -> true
+ | Construct _ -> true
| _ -> false in
let hi_args_enough = (* hi a le bon nbre d'arguments *)
List.length hi_args = List.length params + !res.nargs -1 in
@@ -2469,12 +2469,12 @@ let compute_elim_sig ?elimc elimt =
match !res.indarg with
| None -> !res (* No indref *)
| Some ( _,Some _,_) -> error_ind_scheme ""
- | Some ( _,None,ind) ->
+ | Some ( _,None,ind) ->
let indhd,indargs = decompose_app ind in
try {!res with indref = Some (global_of_constr indhd) }
with _ -> error "Cannot find the inductive type of the inductive scheme.";;
-(* Check that the elimination scheme has a form similar to the
+(* Check that the elimination scheme has a form similar to the
elimination schemes built by Coq. Schemes may have the standard
form computed from an inductive type OR (feb. 2006) a non standard
form. That is: with no main induction argument and with an optional
@@ -2488,29 +2488,29 @@ let compute_elim_signature elimc elimt names_info ind_type_guess =
match scheme.indarg with
| Some (_,Some _,_) -> error "Strange letin, cannot recognize an induction scheme."
| None -> (* Non standard scheme *)
- let is_pred n c =
+ let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+scheme.npredicates -> IndArg
| _ when hd = ind_type_guess & not scheme.farg_in_concl -> RecArg
- | _ -> OtherArg in
- let rec check_branch p c =
+ | _ -> OtherArg in
+ let rec check_branch p c =
match kind_of_term c with
| Prod (_,t,c) ->
(is_pred p t, dependent (mkRel 1) c) :: check_branch (p+1) c
| LetIn (_,_,_,c) ->
(OtherArg, dependent (mkRel 1) c) :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
- | _ -> raise Exit in
- let rec find_branches p lbrch =
+ | _ -> raise Exit in
+ let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
- let n = List.fold_left
+ let n = List.fold_left
(fun n (b,_) -> if b=RecArg then n+1 else n) 0 lchck_brch in
- let recvarname, hyprecname, avoid =
+ let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
- let namesign =
+ let namesign =
List.map (fun (b,dep) ->
(b,dep,if b=IndArg then hyprecname else recvarname))
lchck_brch in
@@ -2519,33 +2519,33 @@ let compute_elim_signature elimc elimt names_info ind_type_guess =
| (_,Some _,_)::_ -> error_ind_scheme "the branches of"
| [] -> [] in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
- indsign,scheme
-
+ indsign,scheme
+
| Some ( _,None,ind) -> (* Standard scheme from an inductive type *)
let indhd,indargs = decompose_app ind in
- let is_pred n c =
+ let is_pred n c =
let hd = fst (decompose_app c) in match kind_of_term hd with
| Rel q when n < q & q <= n+scheme.npredicates -> IndArg
| _ when hd = indhd -> RecArg
| _ -> OtherArg in
let rec check_branch p c = match kind_of_term c with
- | Prod (_,t,c) ->
+ | Prod (_,t,c) ->
(is_pred p t, dependent (mkRel 1) c) :: check_branch (p+1) c
| LetIn (_,_,_,c) ->
(OtherArg, dependent (mkRel 1) c) :: check_branch (p+1) c
| _ when is_pred p c = IndArg -> []
- | _ -> raise Exit in
+ | _ -> raise Exit in
let rec find_branches p lbrch =
match lbrch with
| (_,None,t)::brs ->
(try
let lchck_brch = check_branch p t in
- let n = List.fold_left
+ let n = List.fold_left
(fun n (b,_) -> if b=RecArg then n+1 else n) 0 lchck_brch in
- let recvarname, hyprecname, avoid =
+ let recvarname, hyprecname, avoid =
make_up_names n scheme.indref names_info in
- let namesign =
- List.map (fun (b,dep) ->
+ let namesign =
+ List.map (fun (b,dep) ->
(b,dep,if b=IndArg then hyprecname else recvarname))
lchck_brch in
(avoid,namesign) :: find_branches (p+1) brs
@@ -2555,12 +2555,12 @@ let compute_elim_signature elimc elimt names_info ind_type_guess =
(* Check again conclusion *)
let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f = IndArg in
- let ind_is_ok =
- list_lastn scheme.nargs indargs
+ let ind_is_ok =
+ list_lastn scheme.nargs indargs
= extended_rel_list 0 scheme.args in
if not (ccl_arg_ok & ind_is_ok) then
error_ind_scheme "the conclusion of";
- []
+ []
in
let indsign = Array.of_list (find_branches 0 (List.rev scheme.branches)) in
indsign,scheme
@@ -2575,7 +2575,7 @@ let find_elim_signature isrec elim hyp0 gl =
let elimc =
if isrec then lookup_eliminator mind s
else
- let case =
+ let case =
if dependent_no_evar (mkVar hyp0) (pf_concl gl) then make_case_dep
else make_case_gen in
pf_apply case gl mind s in
@@ -2592,11 +2592,11 @@ let find_elim_signature isrec elim hyp0 gl =
(* Instantiate all meta variables of elimclause using lid, some elts
of lid are parameters (first ones), the other are
arguments. Returns the clause obtained. *)
-let recolle_clenv scheme lid elimclause gl =
+let recolle_clenv scheme lid elimclause gl =
let _,arr = destApp elimclause.templval.rebus in
- let lindmv =
+ let lindmv =
Array.map
- (fun x ->
+ (fun x ->
match kind_of_term x with
| Meta mv -> mv
| _ -> errorlabstrm "elimination_clause"
@@ -2606,15 +2606,15 @@ let recolle_clenv scheme lid elimclause gl =
let lidparams,lidargs = cut_list (scheme.nparams) lid in
let nidargs = List.length lidargs in
(* parameters correspond to first elts of lid. *)
- let clauses_params =
+ let clauses_params =
list_map_i (fun i id -> mkVar id , pf_get_hyp_typ gl id , lindmv.(i))
0 lidparams in
(* arguments correspond to last elts of lid. *)
- let clauses_args =
- list_map_i
+ let clauses_args =
+ list_map_i
(fun i id -> mkVar id , pf_get_hyp_typ gl id , lindmv.(nmv-nidargs+i))
0 lidargs in
- let clause_indarg =
+ let clause_indarg =
match scheme.indarg with
| None -> []
| Some (x,_,typx) -> []
@@ -2637,9 +2637,9 @@ let recolle_clenv scheme lid elimclause gl =
(elimc ?i ?j ?k...?l). This solves partly meta variables (and may
produce new ones). Then refine with the resulting term with holes.
*)
-let induction_tac_felim with_evars indvars scheme gl =
+let induction_tac_felim with_evars indvars scheme gl =
let elimt = scheme.elimt in
- let elimc,lbindelimc =
+ let elimc,lbindelimc =
match scheme.elimc with | Some x -> x | None -> error "No definition of the principle." in
(* elimclause contains this: (elimc ?i ?j ?k...?l) *)
let elimclause =
@@ -2660,7 +2660,7 @@ let apply_induction_in_context isrec hyp0 indsign indvars names induct_tac gl =
List.fold_left
(fun a (id,b,_) -> if b = None then (mkVar id)::a else a) [] deps in
tclTHENLIST
- [
+ [
(* Generalize dependent hyps (but not args) *)
if deps = [] then tclIDTAC else apply_type tmpcl deps_cstr;
(* clear dependent hyps *)
@@ -2668,7 +2668,7 @@ let apply_induction_in_context isrec hyp0 indsign indvars names induct_tac gl =
(* side-conditions in elim (resp case) schemes come last (resp first) *)
(if isrec then tclTHENFIRSTn else tclTHENLASTn)
(tclTHEN induct_tac (tclTRY (thin (List.rev indhyps))))
- (array_map2
+ (array_map2
(induct_discharge statlists lhyp0 (List.rev dephyps)) indsign names)
]
gl
@@ -2683,24 +2683,24 @@ let induction_from_context_l isrec with_evars elim_info lid names gl =
let indsign,scheme = elim_info in
(* number of all args, counting farg and indarg if present. *)
let nargs_indarg_farg = scheme.nargs
- + (if scheme.farg_in_concl then 1 else 0)
+ + (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0) in
(* Number of given induction args must be exact. *)
- if List.length lid <> nargs_indarg_farg + scheme.nparams then
+ if List.length lid <> nargs_indarg_farg + scheme.nparams then
error "Not the right number of arguments given to induction scheme.";
(* hyp0 is used for re-introducing hyps at the right place afterward.
We chose the first element of the list of variables on which to
induct. It is probably the first of them appearing in the
context. *)
- let hyp0,indvars,lid_params =
+ let hyp0,indvars,lid_params =
match lid with
| [] -> anomaly "induction_from_context_l"
- | e::l ->
+ | e::l ->
let nargs_without_first = nargs_indarg_farg - 1 in
let ivs,lp = cut_list nargs_without_first l in
e, ivs, lp in
(* terms to patternify we must patternify indarg or farg if present in concl *)
- let lid_in_pattern =
+ let lid_in_pattern =
if scheme.indarg <> None & not scheme.indarg_in_concl then List.rev indvars
else List.rev (hyp0::indvars) in
let lidcstr = List.map (fun x -> mkVar x) lid_in_pattern in
@@ -2747,7 +2747,7 @@ let induction_with_atomization_of_ind_arg isrec with_evars elim names (hyp0,lbin
let indref = match scheme.indref with | None -> assert false | Some x -> x in
tclTHEN
(atomize_param_of_ind (indref,scheme.nparams) hyp0)
- (induction_from_context isrec with_evars elim_info
+ (induction_from_context isrec with_evars elim_info
(hyp0,lbind) names inhyps) gl
(* Induction on a list of induction arguments. Analyse the elim
@@ -2756,8 +2756,8 @@ let induction_with_atomization_of_ind_arg isrec with_evars elim names (hyp0,lbin
let induction_without_atomization isrec with_evars elim names lid gl =
let (indsign,scheme as elim_info) =
find_elim_signature isrec elim (List.hd lid) gl in
- let awaited_nargs =
- scheme.nparams + scheme.nargs
+ let awaited_nargs =
+ scheme.nparams + scheme.nargs
+ (if scheme.farg_in_concl then 1 else 0)
+ (if scheme.indarg <> None then 1 else 0)
in
@@ -2787,7 +2787,7 @@ let clear_unselected_context id inhyps cls gl =
| None -> tclIDTAC gl
| Some cls ->
if occur_var (pf_env gl) id (pf_concl gl) &&
- cls.concl_occs = no_occurrences_expr
+ cls.concl_occs = no_occurrences_expr
then errorlabstrm ""
(str "Conclusion must be mentioned: it depends on " ++ pr_id id
++ str ".");
@@ -2809,14 +2809,14 @@ let new_induct_gen isrec with_evars elim (eqname,names) (c,lbind) cls gl =
| _ -> [] in
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context()))
- & lbind = NoBindings & not with_evars & eqname = None
+ & lbind = NoBindings & not with_evars & eqname = None
& not (has_selected_occurrences cls) ->
tclTHEN
(clear_unselected_context id inhyps cls)
(induction_with_atomization_of_ind_arg
isrec with_evars elim names (id,lbind) inhyps) gl
| _ ->
- let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
+ let x = id_of_name_using_hdchar (Global.env()) (pf_type_of gl c)
Anonymous in
let id = fresh_id [] x gl in
(* We need the equality name now *)
@@ -2844,22 +2844,22 @@ let new_induct_gen_l isrec with_evars elim (eqname,names) lc gl =
| c::l' ->
match kind_of_term c with
| Var id when not (mem_named_context id (Global.named_context()))
- & not with_evars ->
+ & not with_evars ->
let _ = newlc:= id::!newlc in
atomize_list l' gl
| _ ->
- let x =
+ let x =
id_of_name_using_hdchar (Global.env()) (pf_type_of gl c) Anonymous in
-
+
let id = fresh_id [] x gl in
let newl' = List.map (replace_term c (mkVar id)) l' in
let _ = newlc:=id::!newlc in
let _ = letids:=id::!letids in
- tclTHEN
+ tclTHEN
(letin_tac None (Name id) c None allHypsAndConcl)
(atomize_list newl') gl in
- tclTHENLIST
+ tclTHENLIST
[
(atomize_list lc);
(fun gl' -> (* recompute each time to have the new value of newlc *)
@@ -2872,16 +2872,16 @@ let new_induct_gen_l isrec with_evars elim (eqname,names) lc gl =
gl
-let induct_destruct_l isrec with_evars lc elim names cls =
+let induct_destruct_l isrec with_evars lc elim names cls =
(* Several induction hyps: induction scheme is mandatory *)
- let _ =
+ let _ =
if elim = None
- then
- errorlabstrm "" (strbrk "Induction scheme must be given when several induction hypothesis are given.\n" ++
+ then
+ errorlabstrm "" (strbrk "Induction scheme must be given when several induction hypothesis are given.\n" ++
str "Example: induction x1 x2 x3 using my_scheme.") in
- let newlc =
+ let newlc =
List.map
- (fun x ->
+ (fun x ->
match x with (* FIXME: should we deal with ElimOnIdent? *)
| ElimOnConstr (x,NoBindings) -> x
| _ -> error "Don't know where to find some argument.")
@@ -2893,7 +2893,7 @@ let induct_destruct_l isrec with_evars lc elim names cls =
(* Induction either over a term, over a quantified premisse, or over
several quantified premisses (like with functional induction
- principles).
+ principles).
TODO: really unify induction with one and induction with several
args *)
let induct_destruct isrec with_evars (lc,elim,names,cls) =
@@ -2923,7 +2923,7 @@ let new_destruct ev lc e idl cls = induct_destruct false ev (lc,e,idl,cls)
(* The registered tactic, which calls the default elimination
* if no elimination constant is provided. *)
-
+
(* Induction tactics *)
(* This was Induction before 6.3 (induction only in quantified premisses) *)
@@ -2951,7 +2951,7 @@ let simple_destruct = function
(*
* Eliminations giving the type instead of the proof.
* These tactics use the default elimination constant and
- * no substitutions at all.
+ * no substitutions at all.
* May be they should be integrated into Elim ...
*)
@@ -2974,7 +2974,7 @@ let elim_type t gl =
let case_type t gl =
let (ind,t) = pf_reduce_to_atomic_ind gl t in
let env = pf_env gl in
- let elimc = make_case_gen env (project gl) ind (elimination_sort_of_goal gl) in
+ let elimc = make_case_gen env (project gl) ind (elimination_sort_of_goal gl) in
elim_scheme_type elimc t gl
@@ -2983,10 +2983,10 @@ let case_type t gl =
(* These elimination tactics are particularly adapted for sequent
calculus. They take a clause as argument, and yield the
elimination rule if the clause is of the form (Some id) and a
- suitable introduction rule otherwise. They do not depend on
- the name of the eliminated constant, so they can be also
+ suitable introduction rule otherwise. They do not depend on
+ the name of the eliminated constant, so they can be also
used on ad-hoc disjunctions and conjunctions introduced by
- the user.
+ the user.
-- Eduardo Gimenez (11/8/97)
HH (29/5/99) replaces failures by specific error messages
@@ -2994,10 +2994,10 @@ let case_type t gl =
let andE id gl =
let t = pf_get_hyp_typ gl id in
- if is_conjunction (pf_hnf_constr gl t) then
+ if is_conjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) (tclDO 2 intro)) gl
- else
- errorlabstrm "andE"
+ else
+ errorlabstrm "andE"
(str("Tactic andE expects "^(string_of_id id)^" is a conjunction."))
let dAnd cls =
@@ -3009,10 +3009,10 @@ let dAnd cls =
let orE id gl =
let t = pf_get_hyp_typ gl id in
- if is_disjunction (pf_hnf_constr gl t) then
+ if is_disjunction (pf_hnf_constr gl t) then
(tclTHEN (simplest_elim (mkVar id)) intro) gl
- else
- errorlabstrm "orE"
+ else
+ errorlabstrm "orE"
(str("Tactic orE expects "^(string_of_id id)^" is a disjunction."))
let dorE b cls =
@@ -3024,16 +3024,16 @@ let dorE b cls =
let impE id gl =
let t = pf_get_hyp_typ gl id in
- if is_imp_term (pf_hnf_constr gl t) then
- let (dom, _, rng) = destProd (pf_hnf_constr gl t) in
+ if is_imp_term (pf_hnf_constr gl t) then
+ let (dom, _, rng) = destProd (pf_hnf_constr gl t) in
tclTHENLAST
- (cut_intro rng)
+ (cut_intro rng)
(apply_term (mkVar id) [mkMeta (new_meta())]) gl
- else
+ else
errorlabstrm "impE"
(str("Tactic impE expects "^(string_of_id id)^
" is a an implication."))
-
+
let dImp cls =
onClause
(function
@@ -3051,19 +3051,19 @@ let setoid_reflexivity = ref (fun _ -> assert false)
let register_setoid_reflexivity f = setoid_reflexivity := f
let reflexivity_red allowred gl =
- (* PL: usual reflexivity don't perform any reduction when searching
- for an equality, but we may need to do some when called back from
+ (* PL: usual reflexivity don't perform any reduction when searching
+ for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl = if not allowred then pf_concl gl
- else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
- in
+ else whd_betadeltaiota (pf_env gl) (project gl) (pf_concl gl)
+ in
match match_with_equality_type concl with
| None -> raise NoEquationFound
| Some _ -> one_constructor 1 NoBindings gl
let reflexivity gl =
try reflexivity_red false gl with NoEquationFound -> !setoid_reflexivity gl
-
+
let intros_reflexivity = (tclTHEN intros reflexivity)
(* Symmetry tactics *)
@@ -3084,18 +3084,18 @@ let prove_symmetry hdcncl eq_kind =
| PolymorphicLeibnizEq (typ,c1,c2) -> mkApp(hdcncl,[|typ;c2;c1|])
| HeterogenousEq (t1,c1,t2,c2) -> mkApp(hdcncl,[|t2;c2;t1;c1|]) in
tclTHENFIRST (cut symc)
- (tclTHENLIST
- [ intro;
- onLastHyp simplest_case;
+ (tclTHENLIST
+ [ intro;
+ onLastHyp simplest_case;
one_constructor 1 NoBindings ])
let symmetry_red allowred gl =
- (* PL: usual symmetry don't perform any reduction when searching
- for an equality, but we may need to do some when called back from
+ (* PL: usual symmetry don't perform any reduction when searching
+ for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl =
if not allowred then pf_concl gl else pf_whd_betadeltaiota gl (pf_concl gl)
- in
+ in
match match_with_equation concl with
| Some eq_data,_,_ ->
tclTHEN
@@ -3109,10 +3109,10 @@ let symmetry gl =
let setoid_symmetry_in = ref (fun _ _ -> assert false)
let register_setoid_symmetry_in f = setoid_symmetry_in := f
-let symmetry_in id gl =
- let ctype = pf_type_of gl (mkVar id) in
+let symmetry_in id gl =
+ let ctype = pf_type_of gl (mkVar id) in
let sign,t = decompose_prod_assum ctype in
- try
+ try
let _,hdcncl,eq = match_with_equation t in
let symccl = match eq with
| MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c2; c1 |])
@@ -3134,9 +3134,9 @@ let intros_symmetry =
(* This tactic first tries to apply a constant named trans_eq, where eq
is the name of the equality predicate. If this constant is not
- defined and the conclusion is a=b, it solves the goal doing
- Cut x1=x2;
- [Cut x2=x3; [Intros e1 e2; Case e2;Assumption
+ defined and the conclusion is a=b, it solves the goal doing
+ Cut x1=x2;
+ [Cut x2=x3; [Intros e1 e2; Case e2;Assumption
| Idtac]
| Idtac]
--Eduardo (19/8/97)
@@ -3165,8 +3165,8 @@ let prove_transitivity hdcncl eq_kind t gl =
assumption ])) gl
let transitivity_red allowred t gl =
- (* PL: usual transitivity don't perform any reduction when searching
- for an equality, but we may need to do some when called back from
+ (* PL: usual transitivity don't perform any reduction when searching
+ for an equality, but we may need to do some when called back from
inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *)
let concl =
if not allowred then pf_concl gl else pf_whd_betadeltaiota gl (pf_concl gl)
@@ -3192,8 +3192,8 @@ let transitivity t = transitivity_gen (Some t)
let intros_transitivity n = tclTHEN intros (transitivity_gen n)
-(* tactical to save as name a subproof such that the generalisation of
- the current goal, abstracted with respect to the local signature,
+(* tactical to save as name a subproof such that the generalisation of
+ the current goal, abstracted with respect to the local signature,
is solved by tac *)
let interpretable_as_section_decl d1 d2 = match d1,d2 with
@@ -3201,16 +3201,16 @@ let interpretable_as_section_decl d1 d2 = match d1,d2 with
| (_,Some b1,t1), (_,Some b2,t2) -> eq_constr b1 b2 & eq_constr t1 t2
| (_,None,t1), (_,_,t2) -> eq_constr t1 t2
-let abstract_subproof name tac gl =
+let abstract_subproof name tac gl =
let current_sign = Global.named_context()
and global_sign = pf_hyps gl in
- let sign,secsign =
+ let sign,secsign =
List.fold_right
- (fun (id,_,_ as d) (s1,s2) ->
+ (fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,push_named_context_val d s2)
- else (add_named_decl d s1,s2))
+ else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context_val) in
let na = next_global_ident_away false name (pf_ids_of_hyps gl) in
let concl = it_mkNamedProd_or_LetIn (pf_concl gl) sign in
@@ -3220,10 +3220,10 @@ let abstract_subproof name tac gl =
start_proof na (Global, Proof Lemma) secsign concl (fun _ _ -> ());
let _,(const,_,kind,_) =
try
- by (tclCOMPLETE (tclTHEN (tclDO (List.length sign) intro) tac));
- let r = cook_proof ignore in
+ by (tclCOMPLETE (tclTHEN (tclDO (List.length sign) intro) tac));
+ let r = cook_proof ignore in
delete_current_proof (); r
- with
+ with
e ->
(delete_current_proof(); raise e)
in (* Faudrait un peu fonctionnaliser cela *)
@@ -3231,29 +3231,29 @@ let abstract_subproof name tac gl =
let con = Declare.declare_internal_constant na (cd,IsProof Lemma) in
constr_of_global (ConstRef con)
in
- exact_no_check
- (applist (lemme,
+ exact_no_check
+ (applist (lemme,
List.rev (Array.to_list (instance_from_named_context sign))))
gl
-let tclABSTRACT name_op tac gl =
- let s = match name_op with
- | Some s -> s
- | None -> add_suffix (get_current_proof_name ()) "_subproof"
- in
+let tclABSTRACT name_op tac gl =
+ let s = match name_op with
+ | Some s -> s
+ | None -> add_suffix (get_current_proof_name ()) "_subproof"
+ in
abstract_subproof s tac gl
let admit_as_an_axiom gl =
let current_sign = Global.named_context()
and global_sign = pf_hyps gl in
- let sign,secsign =
+ let sign,secsign =
List.fold_right
- (fun (id,_,_ as d) (s1,s2) ->
+ (fun (id,_,_ as d) (s1,s2) ->
if mem_named_context id current_sign &
interpretable_as_section_decl (Sign.lookup_named id current_sign) d
then (s1,add_named_decl d s2)
- else (add_named_decl d s1,s2))
+ else (add_named_decl d s1,s2))
global_sign (empty_named_context,empty_named_context) in
let name = add_suffix (get_current_proof_name ()) "_admitted" in
let na = next_global_ident_away false name (pf_ids_of_hyps gl) in
@@ -3264,19 +3264,19 @@ let admit_as_an_axiom gl =
let con = Declare.declare_internal_constant na (cd,IsAssumption Logical) in
constr_of_global (ConstRef con)
in
- exact_no_check
- (applist (axiom,
+ exact_no_check
+ (applist (axiom,
List.rev (Array.to_list (instance_from_named_context sign))))
gl
let unify ?(state=full_transparent_state) x y gl =
- try
- let flags =
- {default_unify_flags with
+ try
+ let flags =
+ {default_unify_flags with
modulo_delta = state;
modulo_conv_on_closed_terms = Some state}
in
- let evd = w_unify false (pf_env gl) Reduction.CONV
+ let evd = w_unify false (pf_env gl) Reduction.CONV
~flags x y (Evd.create_evar_defs (project gl))
in tclEVARS evd gl
with _ -> tclFAIL 0 (str"Not unifiable") gl