diff options
Diffstat (limited to 'pretyping/evarutil.ml')
-rw-r--r-- | pretyping/evarutil.ml | 102 |
1 files changed, 74 insertions, 28 deletions
diff --git a/pretyping/evarutil.ml b/pretyping/evarutil.ml index 0da6c39be..0f71e47fb 100644 --- a/pretyping/evarutil.ml +++ b/pretyping/evarutil.ml @@ -1479,35 +1479,81 @@ let empty_valcon = None (* Builds a value constraint *) let mk_valcon c = Some c -(* Refining an evar to a product or a sort *) +(* Refining an evar to a product -(* Declaring any type to be in the sort Type shouldn't be harmful since - cumulativity now includes Prop and Set in Type... - It is, but that's not too bad *) -let define_evar_as_abstraction abs evd (ev,args) = - let evi = Evd.find_undefined evd ev in + I.e., solve x1..xq |- ?e:T(x1..xq) with e:=Πy:?dom[x1..xq].?rng[x1..xq,y] + where x1..xq |- ?dom:Type and x1..xq,y |- ?rng:Type + + Note: Declaring any type to be in the sort Type shouldn't be harmful + since cumulativity now includes Prop and Set in Type... + It is, but that's not too bad + + To do: should we check that T is Type and instantiate it by a sort + if an evar? +*) + +let idx = id_of_string "x" + +let define_pure_evar_as_product evd evk = + let evi = Evd.find_undefined evd evk in + let evenv = evar_unfiltered_env evi in + let id = next_ident_away idx (ids_of_named_context (evar_context evi)) in + let evd1,dom = new_evar evd evenv (new_Type()) ~filter:(evar_filter evi) in + let evd2,rng = + let newenv = push_named (id, None, dom) evenv in + let src = evar_source evk evd1 in + let filter = true::evar_filter evi in + new_evar evd1 newenv ~src (new_Type()) ~filter in + let prod = mkProd (Name id, dom, subst_var id rng) in + let evd3 = Evd.define evk prod evd2 in + evd3,prod + +(* Refine an applied evar to a product and returns its instantiation *) + +let define_evar_as_product evd (evk,args) = + let evd,prod = define_pure_evar_as_product evd evk in + (* Quick way to compute the instantiation of evk with args *) + let na,dom,rng = destProd prod in + let evdom = mkEvar (fst (destEvar dom), args) in + let evrngargs = array_cons (mkRel 1) (Array.map (lift 1) args) in + let evrng = mkEvar (fst (destEvar rng), evrngargs) in + evd,mkProd (na, evdom, evrng) + +(* Refine an evar with an abstraction + + I.e., solve x1..xq |- ?e:T(x1..xq) with e:=λy:A.?e'[x1..xq,y] where: + - either T(x1..xq) = πy:A(x1..xq).B(x1..xq,y) + or T(x1..xq) = ?d[x1..xq] and we define ?d := πy:?A.?B + with x1..xq |- ?A:Type and x1..xq,y |- ?B:Type + - x1..xq,y:A |- ?e':B +*) + +let define_pure_evar_as_lambda env evd evk = + let evi = Evd.find_undefined evd evk in let evenv = evar_unfiltered_env evi in - let (evd1,dom) = new_evar evd evenv (new_Type()) ~filter:(evar_filter evi) in - let nvar = - next_ident_away (id_of_string "x") - (ids_of_named_context (evar_context evi)) in - let newenv = push_named (nvar, None, dom) evenv in - let (evd2,rng) = - new_evar evd1 newenv ~src:(evar_source ev evd1) (new_Type()) - ~filter:(true::evar_filter evi) in - let prod = abs (Name nvar, dom, subst_var nvar rng) in - let evd3 = Evd.define ev prod evd2 in - let evdom = fst (destEvar dom), args in - let evrng = - fst (destEvar rng), array_cons (mkRel 1) (Array.map (lift 1) args) in - let prod' = abs (Name nvar, mkEvar evdom, mkEvar evrng) in - (evd3,prod') - -let define_evar_as_product evd (ev,args) = - define_evar_as_abstraction (fun t -> mkProd t) evd (ev,args) - -let define_evar_as_lambda evd (ev,args) = - define_evar_as_abstraction (fun t -> mkLambda t) evd (ev,args) + let typ = whd_betadeltaiota env evd (evar_concl evi) in + let evd1,(na,dom,rng) = match kind_of_term typ with + | Prod (na,dom,rng) -> (evd,(na,dom,rng)) + | Evar ev' -> let evd,typ = define_evar_as_product evd ev' in evd,destProd typ + | _ -> error_not_product_loc dummy_loc env evd typ in + let avoid = ids_of_named_context (evar_context evi) in + let id = next_name_away_with_default "x" na avoid in + let newenv = push_named (id, None, dom) evenv in + let filter = true::evar_filter evi in + let src = evar_source evk evd1 in + let evd2,body = new_evar evd1 newenv ~src rng ~filter in + let lam = mkLambda (Name id, dom, subst_var id body) in + Evd.define evk lam evd2, lam + +let define_evar_as_lambda env evd (evk,args) = + let evd,lam = define_pure_evar_as_lambda env evd evk in + (* Quick way to compute the instantiation of evk with args *) + let na,dom,body = destLambda lam in + let evbodyargs = array_cons (mkRel 1) (Array.map (lift 1) args) in + let evbody = mkEvar (fst (destEvar body), evbodyargs) in + evd,mkLambda (na, dom, evbody) + +(* Refining an evar to a sort *) let define_evar_as_sort evd (ev,args) = let s = new_Type () in @@ -1537,7 +1583,7 @@ let split_tycon loc env evd tycon = let (_,dom,rng) = destProd prod in evd',(Anonymous, dom, rng) | App (c,args) when isEvar c -> - let (evd',lam) = define_evar_as_lambda evd (destEvar c) in + let (evd',lam) = define_evar_as_lambda env evd (destEvar c) in real_split evd' (mkApp (lam,args)) | _ -> error_not_product_loc loc env evd c in |