diff options
Diffstat (limited to 'plugins')
-rw-r--r-- | plugins/setoid_ring/Field_tac.v | 3 | ||||
-rw-r--r-- | plugins/setoid_ring/Field_theory.v | 2209 |
2 files changed, 1027 insertions, 1185 deletions
diff --git a/plugins/setoid_ring/Field_tac.v b/plugins/setoid_ring/Field_tac.v index 8ac952c04..c46e7a933 100644 --- a/plugins/setoid_ring/Field_tac.v +++ b/plugins/setoid_ring/Field_tac.v @@ -542,10 +542,9 @@ Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk := let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in match s_spec with | mkhypo ?ss_spec => - let field_ok3 := constr:(field_ok2 _ ss_spec) in match d_spec with | mkhypo ?dd_spec => - let field_ok := constr:(field_ok3 _ dd_spec) in + let field_ok := constr:(field_ok2 _ dd_spec) in let mk_lemma lemma := constr:(lemma _ _ _ _ _ _ _ _ _ _ set ext_r inv_m afth diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v index 2f30b6e17..d584adfc8 100644 --- a/plugins/setoid_ring/Field_theory.v +++ b/plugins/setoid_ring/Field_theory.v @@ -9,118 +9,155 @@ Require Ring. Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms. Require Import ZArith_base. -(*Require Import Omega.*) Set Implicit Arguments. Section MakeFieldPol. -(* Field elements *) - Variable R:Type. - Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R). - Variable (rdiv : R -> R -> R) (rinv : R -> R). - Variable req : R -> R -> Prop. - - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "x / y" := (rdiv x y). - Notation "- x" := (ropp x). Notation "/ x" := (rinv x). - Notation "x == y" := (req x y) (at level 70, no associativity). - - (* Equality properties *) - Variable Rsth : Equivalence req. - Variable Reqe : ring_eq_ext radd rmul ropp req. - Variable SRinv_ext : forall p q, p == q -> / p == / q. - - (* Field properties *) - Record almost_field_theory : Prop := mk_afield { - AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req; - AF_1_neq_0 : ~ 1 == 0; - AFdiv_def : forall p q, p / q == p * / q; - AFinv_l : forall p, ~ p == 0 -> / p * p == 1 - }. +(* Field elements : R *) + +Variable R:Type. +Bind Scope R_scope with R. +Delimit Scope R_scope with ring. + +Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R). +Variable (rdiv : R -> R -> R) (rinv : R -> R). +Variable req : R -> R -> Prop. + +Notation "0" := rO : R_scope. +Notation "1" := rI : R_scope. +Infix "+" := radd : R_scope. +Infix "-" := rsub : R_scope. +Infix "*" := rmul : R_scope. +Infix "/" := rdiv : R_scope. +Notation "- x" := (ropp x) : R_scope. +Notation "/ x" := (rinv x) : R_scope. +Infix "==" := req (at level 70, no associativity) : R_scope. + +Local Open Scope R_scope. + +(* Equality properties *) +Variable Rsth : Equivalence req. +Variable Reqe : ring_eq_ext radd rmul ropp req. +Variable SRinv_ext : forall p q, p == q -> / p == / q. + +(* Field properties *) +Record almost_field_theory : Prop := mk_afield { + AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req; + AF_1_neq_0 : ~ 1 == 0; + AFdiv_def : forall p q, p / q == p * / q; + AFinv_l : forall p, ~ p == 0 -> / p * p == 1 +}. Section AlmostField. - Variable AFth : almost_field_theory. - Let ARth := AFth.(AF_AR). - Let rI_neq_rO := AFth.(AF_1_neq_0). - Let rdiv_def := AFth.(AFdiv_def). - Let rinv_l := AFth.(AFinv_l). +Variable AFth : almost_field_theory. +Let ARth := AFth.(AF_AR). +Let rI_neq_rO := AFth.(AF_1_neq_0). +Let rdiv_def := AFth.(AFdiv_def). +Let rinv_l := AFth.(AFinv_l). - (* Coefficients *) - Variable C: Type. - Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C). - Variable ceqb : C->C->bool. - Variable phi : C -> R. +Add Morphism radd : radd_ext. Proof. exact (Radd_ext Reqe). Qed. +Add Morphism rmul : rmul_ext. Proof. exact (Rmul_ext Reqe). Qed. +Add Morphism ropp : ropp_ext. Proof. exact (Ropp_ext Reqe). Qed. +Add Morphism rsub : rsub_ext. Proof. exact (ARsub_ext Rsth Reqe ARth). Qed. +Add Morphism rinv : rinv_ext. Proof. exact SRinv_ext. Qed. - Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req +Let eq_trans := Setoid.Seq_trans _ _ Rsth. +Let eq_sym := Setoid.Seq_sym _ _ Rsth. +Let eq_refl := Setoid.Seq_refl _ _ Rsth. + +Let radd_0_l := ARadd_0_l ARth. +Let radd_comm := ARadd_comm ARth. +Let radd_assoc := ARadd_assoc ARth. +Let rmul_1_l := ARmul_1_l ARth. +Let rmul_0_l := ARmul_0_l ARth. +Let rmul_comm := ARmul_comm ARth. +Let rmul_assoc := ARmul_assoc ARth. +Let rdistr_l := ARdistr_l ARth. +Let ropp_mul_l := ARopp_mul_l ARth. +Let ropp_add := ARopp_add ARth. +Let rsub_def := ARsub_def ARth. + +Let radd_0_r := ARadd_0_r Rsth ARth. +Let rmul_0_r := ARmul_0_r Rsth ARth. +Let rmul_1_r := ARmul_1_r Rsth ARth. +Let ropp_0 := ARopp_zero Rsth Reqe ARth. +Let rdistr_r := ARdistr_r Rsth Reqe ARth. + +(* Coefficients : C *) + +Variable C: Type. +Bind Scope C_scope with C. +Delimit Scope C_scope with coef. + +Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C). +Variable ceqb : C->C->bool. +Variable phi : C -> R. + +Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi. -Lemma ceqb_rect : forall c1 c2 (A:Type) (x y:A) (P:A->Type), - (phi c1 == phi c2 -> P x) -> P y -> P (if ceqb c1 c2 then x else y). +Notation "0" := cO : C_scope. +Notation "1" := cI : C_scope. +Infix "+" := cadd : C_scope. +Infix "-" := csub : C_scope. +Infix "*" := cmul : C_scope. +Notation "- x" := (copp x) : C_scope. +Infix "?=" := ceqb : C_scope. +Notation "[ x ]" := (phi x) (at level 0). + +Let phi_0 := CRmorph.(morph0). +Let phi_1 := CRmorph.(morph1). + +Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?= c')%coef. Proof. -intros. -generalize (fun h => X (morph_eq CRmorph c1 c2 h)). -case (ceqb c1 c2); auto. +generalize (CRmorph.(morph_eq) c c'). +destruct (c ?= c')%coef; auto. Qed. +(* Power coefficients : Cpow *) - (* C notations *) - Notation "x +! y" := (cadd x y) (at level 50). - Notation "x *! y " := (cmul x y) (at level 40). - Notation "x -! y " := (csub x y) (at level 50). - Notation "-! x" := (copp x) (at level 35). - Notation " x ?=! y" := (ceqb x y) (at level 70, no associativity). - Notation "[ x ]" := (phi x) (at level 0). +Variable Cpow : Type. +Variable Cp_phi : N -> Cpow. +Variable rpow : R -> Cpow -> R. +Variable pow_th : power_theory rI rmul req Cp_phi rpow. +(* sign function *) +Variable get_sign : C -> option C. +Variable get_sign_spec : sign_theory copp ceqb get_sign. +Variable cdiv:C -> C -> C*C. +Variable cdiv_th : div_theory req cadd cmul phi cdiv. - (* Useful tactics *) - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. - Add Morphism rinv : rinv_ext. exact SRinv_ext. Qed. +Let rpow_pow := pow_th.(rpow_pow_N). -Let eq_trans := Setoid.Seq_trans _ _ Rsth. -Let eq_sym := Setoid.Seq_sym _ _ Rsth. -Let eq_refl := Setoid.Seq_refl _ _ Rsth. -Let mor1h := CRmorph.(morph1). - -Hint Resolve eq_refl rdiv_def rinv_l rI_neq_rO . - -Let lem1 := Rmul_ext Reqe. -Let lem2 := Rmul_ext Reqe. -Let lem3 := (Radd_ext Reqe). -Let lem4 := ARsub_ext Rsth Reqe ARth. -Let lem5 := Ropp_ext Reqe. -Let lem6 := ARadd_0_l ARth. -Let lem7 := ARadd_comm ARth. -Let lem8 := (ARadd_assoc ARth). -Let lem9 := ARmul_1_l ARth. -Let lem10 := (ARmul_0_l ARth). -Let lem11 := ARmul_comm ARth. -Let lem12 := ARmul_assoc ARth. -Let lem13 := (ARdistr_l ARth). -Let lem14 := ARopp_mul_l ARth. -Let lem15 := (ARopp_add ARth). -Let lem16 := ARsub_def ARth. - -Hint Resolve lem1 lem2 lem3 lem4 lem5 lem6 lem7 lem8 lem9 lem10 - lem11 lem12 lem13 lem14 lem15 lem16 SRinv_ext. - - (* Power coefficients *) - Variable Cpow : Type. - Variable Cp_phi : N -> Cpow. - Variable rpow : R -> Cpow -> R. - Variable pow_th : power_theory rI rmul req Cp_phi rpow. - (* sign function *) - Variable get_sign : C -> option C. - Variable get_sign_spec : sign_theory copp ceqb get_sign. - - Variable cdiv:C -> C -> C*C. - Variable cdiv_th : div_theory req cadd cmul phi cdiv. +(* Polynomial expressions : (PExpr C) *) + +Bind Scope PE_scope with PExpr. +Delimit Scope PE_scope with poly. Notation NPEeval := (PEeval rO radd rmul rsub ropp phi Cp_phi rpow). +Notation "P @ l" := (NPEeval l P) (at level 10, no associativity). + +Infix "+" := PEadd : PE_scope. +Infix "-" := PEsub : PE_scope. +Infix "*" := PEmul : PE_scope. +Notation "- e" := (PEopp e) : PE_scope. +Infix "^" := PEpow : PE_scope. + +Definition NPEequiv e e' := forall l, e@l == e'@l. +Infix "===" := NPEequiv (at level 70, no associativity) : PE_scope. + +Instance NPEequiv_eq : Equivalence NPEequiv. +Proof. + split; red; unfold NPEequiv; intros; [reflexivity|symmetry|etransitivity]; + eauto. +Qed. + +Instance NPEeval_ext : Proper (eq ==> NPEequiv ==> req) NPEeval. +Proof. + intros l l' <- e e' He. now rewrite (He l). +Qed. + Notation Nnorm:= (norm_subst cO cI cadd cmul csub copp ceqb cdiv). Notation NPphi_dev := (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign). @@ -129,17 +166,16 @@ Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi (* add abstract semi-ring to help with some proofs *) Add Ring Rring : (ARth_SRth ARth). -Local Hint Extern 2 (_ == _) => f_equiv. - (* additional ring properties *) -Lemma rsub_0_l : forall r, 0 - r == - r. -intros; rewrite (ARsub_def ARth);ring. +Lemma rsub_0_l r : 0 - r == - r. +Proof. +rewrite rsub_def; ring. Qed. -Lemma rsub_0_r : forall r, r - 0 == r. -intros; rewrite (ARsub_def ARth). -rewrite (ARopp_zero Rsth Reqe ARth); ring. +Lemma rsub_0_r r : r - 0 == r. +Proof. +rewrite rsub_def, ropp_0; ring. Qed. (*************************************************************************** @@ -148,452 +184,527 @@ Qed. ***************************************************************************) -Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p. +Theorem rdiv_simpl p q : ~ q == 0 -> q * (p / q) == p. Proof. -intros p q H. +intros. rewrite rdiv_def. -transitivity (/ q * q * p); [ ring | idtac ]. -rewrite rinv_l; auto. +transitivity (/ q * q * p); [ ring | ]. +now rewrite rinv_l. Qed. -Hint Resolve rdiv_simpl . -Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv. +Instance rdiv_ext: Proper (req ==> req ==> req) rdiv. Proof. -intros p1 p2 Ep q1 q2 Eq. -transitivity (p1 * / q1); auto. -transitivity (p2 * / q2); auto. +intros p1 p2 Ep q1 q2 Eq. now rewrite !rdiv_def, Ep, Eq. Qed. -Hint Resolve SRdiv_ext. -Lemma rmul_reg_l : forall p q1 q2, +Lemma rmul_reg_l p q1 q2 : ~ p == 0 -> p * q1 == p * q2 -> q1 == q2. Proof. -intros p q1 q2 H EQ. -rewrite <- (@rdiv_simpl q1 p) by trivial. -rewrite <- (@rdiv_simpl q2 p) by trivial. -rewrite !rdiv_def, !(ARmul_assoc ARth). -now rewrite EQ. +intros H EQ. +assert (H' : p * (q1 / p) == p * (q2 / p)). +{ now rewrite !rdiv_def, !rmul_assoc, EQ. } +now rewrite !rdiv_simpl in H'. Qed. -Theorem field_is_integral_domain : forall r1 r2, +Theorem field_is_integral_domain r1 r2 : ~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0. Proof. -intros r1 r2 H1 H2. contradict H2. -transitivity (1 * r2); auto. -transitivity (/ r1 * r1 * r2); auto. -rewrite <- (ARmul_assoc ARth). -rewrite H2. -apply ARmul_0_r with (1 := Rsth) (2 := ARth). +intros H1 H2. contradict H2. +transitivity (/r1 * r1 * r2). +- now rewrite rinv_l. +- now rewrite <- rmul_assoc, H2. Qed. -Theorem ropp_neq_0 : forall r, +Theorem ropp_neq_0 r : ~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0. +Proof. intros. setoid_replace (- r) with (- (1) * r). - apply field_is_integral_domain; trivial. - rewrite <- (ARopp_mul_l ARth). - rewrite (ARmul_1_l ARth). - reflexivity. +- apply field_is_integral_domain; trivial. +- now rewrite <- ropp_mul_l, rmul_1_l. Qed. -Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1. -intros. -rewrite (AFdiv_def AFth). -rewrite (ARmul_comm ARth). -apply (AFinv_l AFth). -trivial. +Theorem rdiv_r_r r : ~ r == 0 -> r / r == 1. +Proof. +intros. rewrite rdiv_def, rmul_comm. now apply rinv_l. Qed. -Theorem rdiv1: forall r, r == r / 1. -intros r; transitivity (1 * (r / 1)); auto. +Theorem rdiv1 r : r == r / 1. +Proof. +transitivity (1 * (r / 1)). +- symmetry; apply rdiv_simpl. apply rI_neq_rO. +- apply rmul_1_l. Qed. -Theorem rdiv2: - forall r1 r2 r3 r4, - ~ r2 == 0 -> - ~ r4 == 0 -> - r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4). +Theorem rdiv2 a b c d : + ~ b == 0 -> + ~ d == 0 -> + a / b + c / d == (a * d + c * b) / (b * d). Proof. -intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). -apply rmul_reg_l with (r2 * r4); trivial. +intros H H0. +assert (~ b * d == 0) by now apply field_is_integral_domain. +apply rmul_reg_l with (b * d); trivial. rewrite rdiv_simpl; trivial. -rewrite (ARdistr_r Rsth Reqe ARth). -apply (Radd_ext Reqe). -- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ]. -- transitivity (r2 * (r4 * (r3 / r4))); auto. - transitivity (r2 * r3); auto. +rewrite rdistr_r. +apply radd_ext. +- now rewrite <- rmul_assoc, (rmul_comm d), rmul_assoc, rdiv_simpl. +- now rewrite (rmul_comm c), <- rmul_assoc, rdiv_simpl. Qed. -Theorem rdiv2b: - forall r1 r2 r3 r4 r5, - ~ (r2*r5) == 0 -> - ~ (r4*r5) == 0 -> - r1 / (r2*r5) + r3 / (r4*r5) == (r1 * r4 + r3 * r2) / (r2 * (r4 * r5)). +Theorem rdiv2b a b c d e : + ~ (b*e) == 0 -> + ~ (d*e) == 0 -> + a / (b*e) + c / (d*e) == (a * d + c * b) / (b * (d * e)). Proof. -intros r1 r2 r3 r4 r5 H H0. -assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring). -assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring). -assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring). -assert (HH4: ~ r2 * (r4 * r5) == 0) +intros H H0. +assert (~ b == 0) by (contradict H; rewrite H; ring). +assert (~ e == 0) by (contradict H; rewrite H; ring). +assert (~ d == 0) by (contradict H0; rewrite H0; ring). +assert (~ b * (d * e) == 0) by (repeat apply field_is_integral_domain; trivial). -apply rmul_reg_l with (r2 * (r4 * r5)); trivial. +apply rmul_reg_l with (b * (d * e)); trivial. rewrite rdiv_simpl; trivial. -rewrite (ARdistr_r Rsth Reqe ARth). -apply (Radd_ext Reqe). - transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ]. - transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ]. -Qed. - -Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2. -Proof. -intros r1 r2. -transitivity (- (r1 * / r2)); auto. -transitivity (- r1 * / r2); auto. -Qed. -Hint Resolve rdiv5 . - -Theorem rdiv3 r1 r2 r3 r4 : - ~ r2 == 0 -> - ~ r4 == 0 -> - r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4). -Proof. -intros H2 H4. -assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). -transitivity (r1 / r2 + - (r3 / r4)); auto. -transitivity (r1 / r2 + - r3 / r4); auto. -transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)). -apply rdiv2; auto. -f_equiv. -transitivity (r1 * r4 + - (r3 * r2)); auto. -Qed. - - -Theorem rdiv3b: - forall r1 r2 r3 r4 r5, - ~ (r2 * r5) == 0 -> - ~ (r4 * r5) == 0 -> - r1 / (r2*r5) - r3 / (r4*r5) == (r1 * r4 - r3 * r2) / (r2 * (r4 * r5)). -Proof. -intros r1 r2 r3 r4 r5 H H0. -transitivity (r1 / (r2 * r5) + - (r3 / (r4 * r5))); auto. -transitivity (r1 / (r2 * r5) + - r3 / (r4 * r5)); auto. -transitivity ((r1 * r4 + - r3 * r2) / (r2 * (r4 * r5))). -apply rdiv2b; auto; try ring. -apply (SRdiv_ext); auto. -transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto. -Qed. - -Theorem rdiv6: - forall r1 r2, - ~ r1 == 0 -> ~ r2 == 0 -> / (r1 / r2) == r2 / r1. -intros r1 r2 H H0. -assert (~ r1 / r2 == 0) as Hk. - intros H1; case H. - transitivity (r2 * (r1 / r2)); auto. - rewrite H1; ring. - apply rmul_reg_l with (r1 / r2); auto. - transitivity (/ (r1 / r2) * (r1 / r2)); auto. - transitivity 1; auto. - repeat rewrite rdiv_def. - transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ]. - repeat rewrite rinv_l; auto. -Qed. -Hint Resolve rdiv6 . - - Theorem rdiv4: - forall r1 r2 r3 r4, - ~ r2 == 0 -> - ~ r4 == 0 -> - (r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4). -Proof. -intros r1 r2 r3 r4 H H0. -assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial). -apply rmul_reg_l with (r2 * r4); trivial. -rewrite rdiv_simpl; trivial. -transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ]. -repeat rewrite rdiv_simpl; trivial. +rewrite rdistr_r. +apply radd_ext. +- transitivity ((b * e) * (a / (b * e)) * d); + [ ring | now rewrite rdiv_simpl ]. +- transitivity ((d * e) * (c / (d * e)) * b); + [ ring | now rewrite rdiv_simpl ]. Qed. - Theorem rdiv4b: - forall r1 r2 r3 r4 r5 r6, - ~ r2 * r5 == 0 -> - ~ r4 * r6 == 0 -> - ((r1 * r6) / (r2 * r5)) * ((r3 * r5) / (r4 * r6)) == (r1 * r3) / (r2 * r4). +Theorem rdiv5 a b : - (a / b) == - a / b. Proof. -intros r1 r2 r3 r4 r5 r6 H H0. -rewrite rdiv4; auto. -transitivity ((r5 * r6) * (r1 * r3) / ((r5 * r6) * (r2 * r4))). -apply SRdiv_ext; ring. -assert (HH: ~ r5*r6 == 0). - apply field_is_integral_domain. - intros H1; case H; rewrite H1; ring. - intros H1; case H0; rewrite H1; ring. -rewrite <- rdiv4 ; auto. - rewrite rdiv_r_r; auto. +now rewrite !rdiv_def, ropp_mul_l. +Qed. - apply field_is_integral_domain. - intros H1; case H; rewrite H1; ring. - intros H1; case H0; rewrite H1; ring. +Theorem rdiv3b a b c d e : + ~ (b * e) == 0 -> + ~ (d * e) == 0 -> + a / (b*e) - c / (d*e) == (a * d - c * b) / (b * (d * e)). +Proof. +intros H H0. +rewrite !rsub_def, rdiv5, ropp_mul_l. +now apply rdiv2b. Qed. +Theorem rdiv6 a b : + ~ a == 0 -> ~ b == 0 -> / (a / b) == b / a. +Proof. +intros H H0. +assert (Hk : ~ a / b == 0). +{ contradict H. + transitivity (b * (a / b)). + - now rewrite rdiv_simpl. + - rewrite H. apply rmul_0_r. } +apply rmul_reg_l with (a / b); trivial. +rewrite (rmul_comm (a / b)), rinv_l; trivial. +rewrite !rdiv_def. +transitivity (/ a * a * (/ b * b)); [ | ring ]. +now rewrite !rinv_l, rmul_1_l. +Qed. + +Theorem rdiv4 a b c d : + ~ b == 0 -> + ~ d == 0 -> + (a / b) * (c / d) == (a * c) / (b * d). +Proof. +intros H H0. +assert (~ b * d == 0) by now apply field_is_integral_domain. +apply rmul_reg_l with (b * d); trivial. +rewrite rdiv_simpl; trivial. +transitivity (b * (a / b) * (d * (c / d))); [ ring | ]. +rewrite !rdiv_simpl; trivial. +Qed. -Theorem rdiv7: - forall r1 r2 r3 r4, - ~ r2 == 0 -> - ~ r3 == 0 -> - ~ r4 == 0 -> - (r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3). +Theorem rdiv4b a b c d e f : + ~ b * e == 0 -> + ~ d * f == 0 -> + ((a * f) / (b * e)) * ((c * e) / (d * f)) == (a * c) / (b * d). +Proof. +intros H H0. +assert (~ b == 0) by (contradict H; rewrite H; ring). +assert (~ e == 0) by (contradict H; rewrite H; ring). +assert (~ d == 0) by (contradict H0; rewrite H0; ring). +assert (~ f == 0) by (contradict H0; rewrite H0; ring). +assert (~ b*d == 0) by now apply field_is_integral_domain. +assert (~ e*f == 0) by now apply field_is_integral_domain. +rewrite rdiv4; trivial. +transitivity ((e * f) * (a * c) / ((e * f) * (b * d))). +- apply rdiv_ext; ring. +- rewrite <- rdiv4, rdiv_r_r; trivial. +Qed. + +Theorem rdiv7 a b c d : + ~ b == 0 -> + ~ c == 0 -> + ~ d == 0 -> + (a / b) / (c / d) == (a * d) / (b * c). Proof. intros. -rewrite (rdiv_def (r1 / r2)). +rewrite (rdiv_def (a / b)). rewrite rdiv6; trivial. apply rdiv4; trivial. Qed. -Theorem rdiv7b: - forall r1 r2 r3 r4 r5 r6, - ~ r2 * r6 == 0 -> - ~ r3 * r5 == 0 -> - ~ r4 * r6 == 0 -> - ((r1 * r5) / (r2 * r6)) / ((r3 * r5) / (r4 * r6)) == (r1 * r4) / (r2 * r3). +Theorem rdiv7b a b c d e f : + ~ b * f == 0 -> + ~ c * e == 0 -> + ~ d * f == 0 -> + ((a * e) / (b * f)) / ((c * e) / (d * f)) == (a * d) / (b * c). +Proof. +intros Hbf Hce Hdf. +assert (~ c==0) by (contradict Hce; rewrite Hce; ring). +assert (~ e==0) by (contradict Hce; rewrite Hce; ring). +assert (~ b==0) by (contradict Hbf; rewrite Hbf; ring). +assert (~ f==0) by (contradict Hbf; rewrite Hbf; ring). +assert (~ b*c==0) by now apply field_is_integral_domain. +assert (~ e*f==0) by now apply field_is_integral_domain. +rewrite rdiv7; trivial. +transitivity ((e * f) * (a * d) / ((e * f) * (b * c))). +- apply rdiv_ext; ring. +- now rewrite <- rdiv4, rdiv_r_r. +Qed. + +Theorem rinv_nz a : ~ a == 0 -> ~ /a == 0. +Proof. +intros H H0. apply rI_neq_rO. +rewrite <- (rdiv_r_r H), rdiv_def, H0. apply rmul_0_r. +Qed. + +Theorem rdiv8 a b : ~ b == 0 -> a == 0 -> a / b == 0. +Proof. +intros H H0. +now rewrite rdiv_def, H0, rmul_0_l. +Qed. + +Theorem cross_product_eq a b c d : + ~ b == 0 -> ~ d == 0 -> a * d == c * b -> a / b == c / d. Proof. intros. -rewrite rdiv7; auto. -transitivity ((r5 * r6) * (r1 * r4) / ((r5 * r6) * (r2 * r3))). -apply SRdiv_ext; ring. -assert (HH: ~ r5*r6 == 0). - apply field_is_integral_domain. - intros H2; case H0; rewrite H2; ring. - intros H2; case H1; rewrite H2; ring. -rewrite <- rdiv4 ; auto. -rewrite rdiv_r_r; auto. - apply field_is_integral_domain. - intros H2; case H; rewrite H2; ring. - intros H2; case H0; rewrite H2; ring. +transitivity (a / b * (d / d)). +- now rewrite rdiv_r_r, rmul_1_r. +- now rewrite rdiv4, H1, (rmul_comm b d), <- rdiv4, rdiv_r_r. Qed. +(* Results about [pow_pos] and [pow_N] *) -Theorem rdiv8: forall r1 r2, ~ r2 == 0 -> r1 == 0 -> r1 / r2 == 0. -intros r1 r2 H H0. -transitivity (r1 * / r2); auto. -transitivity (0 * / r2); auto. +Instance pow_ext : Proper (req ==> eq ==> req) (pow_pos rmul). +Proof. +intros x y H p p' <-. induction p as [p IH| p IH|];simpl; trivial; now rewrite !IH, ?H. Qed. +Instance pow_N_ext : Proper (req ==> eq ==> req) (pow_N rI rmul). +Proof. +intros x y H n n' <-. destruct n; simpl; trivial. now apply pow_ext. +Qed. -Theorem cross_product_eq : forall r1 r2 r3 r4, - ~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4. -intros. -transitivity (r1 / r2 * (r4 / r4)). - rewrite rdiv_r_r; trivial. - symmetry . - apply (ARmul_1_r Rsth ARth). - rewrite rdiv4; trivial. - rewrite H1. - rewrite (ARmul_comm ARth r2 r4). - rewrite <- rdiv4; trivial. - rewrite rdiv_r_r by trivial. - apply (ARmul_1_r Rsth ARth). +Lemma pow_pos_0 p : pow_pos rmul 0 p == 0. +Proof. +induction p;simpl;trivial; now rewrite !IHp. +Qed. + +Lemma pow_pos_1 p : pow_pos rmul 1 p == 1. +Proof. +induction p;simpl;trivial; ring [IHp]. +Qed. + +Lemma pow_pos_cst c p : pow_pos rmul [c] p == [pow_pos cmul c p]. +Proof. +induction p;simpl;trivial; now rewrite !CRmorph.(morph_mul), !IHp. +Qed. + +Lemma pow_pos_mul_l x y p : + pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p. +Proof. +induction p;simpl;trivial; ring [IHp]. +Qed. + +Lemma pow_pos_add_r x p1 p2 : + pow_pos rmul x (p1+p2) == pow_pos rmul x p1 * pow_pos rmul x p2. +Proof. + exact (Ring_theory.pow_pos_add Rsth rmul_ext rmul_assoc x p1 p2). +Qed. + +Lemma pow_pos_mul_r x p1 p2 : + pow_pos rmul x (p1*p2) == pow_pos rmul (pow_pos rmul x p1) p2. +Proof. +induction p1;simpl;intros; rewrite ?pow_pos_mul_l, ?pow_pos_add_r; + simpl; trivial; ring [IHp1]. +Qed. + +Lemma pow_pos_nz x p : ~x==0 -> ~pow_pos rmul x p == 0. +Proof. + intros Hx. induction p;simpl;trivial; + repeat (apply field_is_integral_domain; trivial). +Qed. + +Lemma pow_pos_div a b p : ~ b == 0 -> + pow_pos rmul (a / b) p == pow_pos rmul a p / pow_pos rmul b p. +Proof. + intros. + induction p; simpl; trivial. + - rewrite IHp. + assert (nz := pow_pos_nz p H). + rewrite !rdiv4; trivial. + apply field_is_integral_domain; trivial. + - rewrite IHp. + assert (nz := pow_pos_nz p H). + rewrite !rdiv4; trivial. +Qed. + +(* === is a morphism *) + +Instance PEadd_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEadd C). +Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. +Instance PEsub_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEsub C). +Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. +Instance PEmul_ext : Proper (NPEequiv ==> NPEequiv ==> NPEequiv) (@PEmul C). +Proof. intros ? ? E ? ? E' l. simpl. now rewrite E, E'. Qed. +Instance PEopp_ext : Proper (NPEequiv ==> NPEequiv) (@PEopp C). +Proof. intros ? ? E l. simpl. now rewrite E. Qed. +Instance PEpow_ext : Proper (NPEequiv ==> eq ==> NPEequiv) (@PEpow C). +Proof. + intros ? ? E ? ? <- l. simpl. rewrite !rpow_pow. apply pow_N_ext; trivial. +Qed. + +Arguments PEc _ _%coef. + +Lemma PE_1_l (e : PExpr C) : (PEc 1 * e === e)%poly. +Proof. + intros l. simpl. rewrite phi_1. apply rmul_1_l. +Qed. + +Lemma PE_1_r (e : PExpr C) : (e * PEc 1 === e)%poly. +Proof. + intros l. simpl. rewrite phi_1. apply rmul_1_r. Qed. +Lemma PEpow_0_r (e : PExpr C) : (e ^ 0 === PEc 1)%poly. +Proof. + intros l. simpl. now rewrite !rpow_pow. +Qed. + +Lemma PEpow_1_r (e : PExpr C) : (e ^ 1 === e)%poly. +Proof. + intros l. simpl. now rewrite !rpow_pow. +Qed. + +Lemma PEpow_1_l n : ((PEc 1) ^ n === PEc 1)%poly. +Proof. + intros l. simpl. rewrite rpow_pow. destruct n; simpl. + - now rewrite phi_1. + - now rewrite phi_1, pow_pos_1. +Qed. + +Lemma PEpow_add_r (e : PExpr C) n n' : + (e ^ (n+n') === e ^ n * e ^ n')%poly. +Proof. + intros l. simpl. rewrite !rpow_pow. + destruct n; simpl. + - rewrite rmul_1_l. trivial. + - destruct n'; simpl. + + rewrite rmul_1_r. trivial. + + apply pow_pos_add_r. +Qed. + +Lemma PEpow_mul_l (e e' : PExpr C) n : + ((e * e') ^ n === e ^ n * e' ^ n)%poly. +Proof. + intros l. simpl. rewrite !rpow_pow. destruct n; simpl; trivial. + - symmetry; apply rmul_1_l. + - apply pow_pos_mul_l. +Qed. + +Lemma PEpow_mul_r (e : PExpr C) n n' : + (e ^ (n * n') === (e ^ n) ^ n')%poly. +Proof. + intros l. simpl. rewrite !rpow_pow. + destruct n, n'; simpl; trivial. + - now rewrite pow_pos_1. + - apply pow_pos_mul_r. +Qed. + +Lemma PEpow_nz l e n : ~ e @ l == 0 -> ~ (e^n) @ l == 0. +Proof. + intros. simpl. rewrite rpow_pow. destruct n; simpl. + - apply rI_neq_rO. + - now apply pow_pos_nz. +Qed. + + (*************************************************************************** Some equality test ***************************************************************************) +Local Notation "a &&& b" := (if a then b else false) + (at level 40, left associativity). + (* equality test *) -Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool := - match e1, e2 with - PEc c1, PEc c2 => ceqb c1 c2 - | PEX _ p1, PEX _ p2 => Pos.eqb p1 p2 - | PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false - | PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false - | PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false - | PEopp e3, PEopp e4 => PExpr_eq e3 e4 - | PEpow e3 n3, PEpow e4 n4 => if N.eqb n3 n4 then PExpr_eq e3 e4 else false +Fixpoint PExpr_eq (e e' : PExpr C) {struct e} : bool := + match e, e' with + PEc c, PEc c' => ceqb c c' + | PEX _ p, PEX _ p' => Pos.eqb p p' + | e1 + e2, e1' + e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' + | e1 - e2, e1' - e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' + | e1 * e2, e1' * e2' => PExpr_eq e1 e1' &&& PExpr_eq e2 e2' + | - e, - e' => PExpr_eq e e' + | e ^ n, e' ^ n' => N.eqb n n' &&& PExpr_eq e e' | _, _ => false - end. + end%poly. + +Lemma if_true (a b : bool) : a &&& b = true -> a = true /\ b = true. +Proof. + destruct a, b; split; trivial. +Qed. + +Theorem PExpr_eq_semi_ok e e' : + PExpr_eq e e' = true -> (e === e')%poly. +Proof. +revert e'; induction e; destruct e'; simpl; try discriminate. +- intros H l. now apply (morph_eq CRmorph). +- case Pos.eqb_spec; intros; now subst. +- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. +- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. +- intros H; destruct (if_true _ _ H). now rewrite IHe1, IHe2. +- intros H. now rewrite IHe. +- intros H. destruct (if_true _ _ H). + apply N.eqb_eq in H0. now rewrite IHe, H0. +Qed. + +Lemma PExpr_eq_spec e e' : BoolSpec (e === e')%poly True (PExpr_eq e e'). +Proof. + assert (H := PExpr_eq_semi_ok e e'). + destruct PExpr_eq; constructor; intros; trivial. now apply H. +Qed. + +(** Smart constructors for polynomial expression, + with reduction of constants *) -Add Morphism (pow_pos rmul) with signature req ==> eq ==> req as pow_morph. -intros x y H p;induction p as [p IH| p IH|];simpl;auto;ring[IH]. -Qed. - -Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph. -intros x y H [|p];simpl;auto. apply pow_morph;trivial. -Qed. - -Theorem PExpr_eq_semi_correct: - forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2. -intros l e1; elim e1. -intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)). -intros c2; apply (morph_eq CRmorph). -intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)). -intros p2; case Pos.eqb_spec; intros; now subst. -intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). -intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); - (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); - (try (intros; discriminate)); auto. -intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). -intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); - (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); - (try (intros; discriminate)); auto. -intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)). -intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4); - (try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6); - (try (intros; discriminate)); auto. -intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))). -intros e4; generalize (rec e4); case (PExpr_eq e3 e4); - (try (intros; discriminate)); auto. -intros e3 rec n3 e2;(case e2;simpl;(try (intros;discriminate))). -intros e4 n4; case N.eqb_spec; try discriminate; intros EQ H; subst. -repeat rewrite pow_th.(rpow_pow_N). rewrite (rec _ H);auto. -Qed. - -(* add *) Definition NPEadd e1 e2 := match e1, e2 with - PEc c1, PEc c2 => PEc (cadd c1 c2) - | PEc c, _ => if ceqb c cO then e2 else PEadd e1 e2 - | _, PEc c => if ceqb c cO then e1 else PEadd e1 e2 + | PEc c1, PEc c2 => PEc (c1 + c2) + | PEc c, _ => if (c ?= cO)%coef then e2 else e1 + e2 + | _, PEc c => if (c ?= cO)%coef then e1 else e1 + e2 (* Peut t'on factoriser ici ??? *) - | _, _ => PEadd e1 e2 - end. + | _, _ => e1 + e2 + end%poly. +Infix "++" := NPEadd (at level 60, right associativity). -Theorem NPEadd_correct: - forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2). +Theorem NPEadd_ok e1 e2 : (e1 ++ e2 === e1 + e2)%poly. Proof. -intros l e1 e2. -destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl; - try (ring [(morph0 CRmorph)]). - apply (morph_add CRmorph). +intros l. +destruct e1, e2; simpl; try reflexivity; try (case ceqb_spec); +try intro H; try rewrite H; simpl; +try apply eq_refl; try (ring [phi_0]). +apply (morph_add CRmorph). +Qed. + +Definition NPEsub e1 e2 := + match e1, e2 with + | PEc c1, PEc c2 => PEc (c1 - c2) + | PEc c, _ => if (c ?=cO)%coef then - e2 else e1 - e2 + | _, PEc c => if (c ?= cO)%coef then e1 else e1 - e2 + (* Peut-on factoriser ici *) + | _, _ => e1 - e2 + end%poly. +Infix "--" := NPEsub (at level 50, left associativity). + +Theorem NPEsub_ok e1 e2: (e1 -- e2 === e1 - e2)%poly. +Proof. +intros l. +destruct e1, e2; simpl; try reflexivity; try case ceqb_spec; + try intro H; try rewrite H; simpl; + try rewrite phi_0; try reflexivity; + try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). +apply (morph_sub CRmorph). +Qed. + +Definition NPEopp e1 := + match e1 with PEc c1 => PEc (- c1) | _ => - e1 end%poly. + +Theorem NPEopp_ok e : (NPEopp e === -e)%poly. +Proof. +intros l. destruct e; simpl; trivial. apply (morph_opp CRmorph). Qed. Definition NPEpow x n := match n with | N0 => PEc cI | Npos p => - if Pos.eqb p xH then x else + if Pos.eqb p 1 then x else match x with | PEc c => - if ceqb c cI then PEc cI else if ceqb c cO then PEc cO else PEc (pow_pos cmul c p) - | _ => PEpow x n + if (c ?= 1)%coef then PEc cI + else if (c ?= 0)%coef then PEc cO + else PEc (pow_pos cmul c p) + | _ => x ^ n end - end. + end%poly. +Infix "^^" := NPEpow (at level 35, right associativity). -Theorem NPEpow_correct : forall l e n, - NPEeval l (NPEpow e n) == NPEeval l (PEpow e n). +Theorem NPEpow_ok e n : (e ^^ n === e ^ n)%poly. Proof. - destruct n;simpl. - rewrite pow_th.(rpow_pow_N);simpl;auto. - fold (p =? 1)%positive. - case Pos.eqb_spec; intros H; (rewrite H || clear H). - now rewrite pow_th.(rpow_pow_N). - destruct e;simpl;auto. - repeat apply ceqb_rect;simpl;intros;rewrite pow_th.(rpow_pow_N);simpl. - symmetry;induction p;simpl;trivial; ring [IHp H CRmorph.(morph1)]. - symmetry; induction p;simpl;trivial;ring [IHp CRmorph.(morph0)]. - induction p;simpl;auto;repeat rewrite CRmorph.(morph_mul);ring [IHp]. + intros l. unfold NPEpow; destruct n. + - simpl; now rewrite rpow_pow. + - case Pos.eqb_spec; [intro; subst | intros _]. + + simpl. now rewrite rpow_pow. + + destruct e;simpl;trivial. + repeat case ceqb_spec; intros; rewrite ?rpow_pow, ?H; simpl. + * now rewrite phi_1, pow_pos_1. + * now rewrite phi_0, pow_pos_0. + * now rewrite pow_pos_cst. Qed. -(* mul *) Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C := match x, y with - PEc c1, PEc c2 => PEc (cmul c1 c2) + PEc c1, PEc c2 => PEc (c1 * c2) | PEc c, _ => - if ceqb c cI then y else if ceqb c cO then PEc cO else PEmul x y + if (c ?= 1)%coef then y else if (c ?= 0)%coef then PEc cO else x * y | _, PEc c => - if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y - | PEpow e1 n1, PEpow e2 n2 => - if N.eqb n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y - | _, _ => PEmul x y - end. - -Lemma pow_pos_mul : forall x y p, pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p. -induction p;simpl;auto;try ring [IHp]. -Qed. - -Theorem NPEmul_correct : forall l e1 e2, - NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2). -induction e1;destruct e2; simpl;try reflexivity; - repeat apply ceqb_rect; - try (intro eq_c; rewrite eq_c); simpl; try reflexivity; - try ring [(morph0 CRmorph) (morph1 CRmorph)]. + if (c ?= 1)%coef then x else if (c ?= 0)%coef then PEc cO else x * y + | e1 ^ n1, e2 ^ n2 => + if N.eqb n1 n2 then (NPEmul e1 e2)^^n1 else x * y + | _, _ => x * y + end%poly. +Infix "**" := NPEmul (at level 40, left associativity). + +Theorem NPEmul_ok e1 e2 : (e1 ** e2 === e1 * e2)%poly. +Proof. +intros l. +revert e2; induction e1;destruct e2; simpl;try reflexivity; + repeat (case ceqb_spec; intro H; try rewrite H; clear H); + simpl; try reflexivity; try ring [phi_0 phi_1]. apply (morph_mul CRmorph). -case N.eqb_spec; intros H; try rewrite <- H; clear H. -rewrite NPEpow_correct. simpl. -repeat rewrite pow_th.(rpow_pow_N). -rewrite IHe1; destruct n;simpl;try ring. -apply pow_pos_mul. -simpl;auto. -Qed. - -(* sub *) -Definition NPEsub e1 e2 := - match e1, e2 with - PEc c1, PEc c2 => PEc (csub c1 c2) - | PEc c, _ => if ceqb c cO then PEopp e2 else PEsub e1 e2 - | _, PEc c => if ceqb c cO then e1 else PEsub e1 e2 - (* Peut-on factoriser ici *) - | _, _ => PEsub e1 e2 - end. - -Theorem NPEsub_correct: - forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2). -intros l e1 e2. -destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect; - try (intro eq_c; rewrite eq_c); simpl; - try rewrite (morph0 CRmorph); try reflexivity; - try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r). -apply (morph_sub CRmorph). -Qed. - -(* opp *) -Definition NPEopp e1 := - match e1 with PEc c1 => PEc (copp c1) | _ => PEopp e1 end. - -Theorem NPEopp_correct: - forall l e1, NPEeval l (NPEopp e1) == NPEeval l (PEopp e1). -intros l e1; case e1; simpl; auto. -intros; apply (morph_opp CRmorph). +case N.eqb_spec; [intros <- | reflexivity]. +rewrite NPEpow_ok. simpl. +rewrite !rpow_pow. rewrite IHe1. +destruct n; simpl; [ ring | apply pow_pos_mul_l ]. Qed. (* simplification *) -Fixpoint PExpr_simp (e : PExpr C) : PExpr C := +Fixpoint PEsimp (e : PExpr C) : PExpr C := match e with - PEadd e1 e2 => NPEadd (PExpr_simp e1) (PExpr_simp e2) - | PEmul e1 e2 => NPEmul (PExpr_simp e1) (PExpr_simp e2) - | PEsub e1 e2 => NPEsub (PExpr_simp e1) (PExpr_simp e2) - | PEopp e1 => NPEopp (PExpr_simp e1) - | PEpow e1 n1 => NPEpow (PExpr_simp e1) n1 + | e1 + e2 => (PEsimp e1) ++ (PEsimp e2) + | e1 * e2 => (PEsimp e1) ** (PEsimp e2) + | e1 - e2 => (PEsimp e1) -- (PEsimp e2) + | - e1 => NPEopp (PEsimp e1) + | e1 ^ n1 => (PEsimp e1) ^^ n1 | _ => e - end. + end%poly. -Theorem PExpr_simp_correct: - forall l e, NPEeval l (PExpr_simp e) == NPEeval l e. -intros l e; elim e; simpl; auto. -intros e1 He1 e2 He2. -transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto. -apply NPEadd_correct. -simpl; auto. -intros e1 He1 e2 He2. -transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))); auto. -apply NPEsub_correct. -simpl; auto. -intros e1 He1 e2 He2. -transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto. -apply NPEmul_correct. -simpl; auto. -intros e1 He1. -transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto. -apply NPEopp_correct. -simpl; auto. -intros e1 He1 n;simpl. -rewrite NPEpow_correct;simpl. -repeat rewrite pow_th.(rpow_pow_N). -rewrite He1;auto. +Theorem PEsimp_ok e : (PEsimp e === e)%poly. +Proof. +induction e; simpl. +- intro l; trivial. +- intro l; trivial. +- rewrite NPEadd_ok. now f_equiv. +- rewrite NPEsub_ok. now f_equiv. +- rewrite NPEmul_ok. now f_equiv. +- rewrite NPEopp_ok. now f_equiv. +- rewrite NPEpow_ok. now f_equiv. Qed. @@ -647,44 +758,46 @@ Record linear : Type := mk_linear { Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop := match le with | nil => True - | e1 :: nil => ~ req (NPEeval l e1) rO - | e1 :: l1 => ~ req (NPEeval l e1) rO /\ PCond l l1 + | e1 :: nil => ~ req (e1 @ l) rO + | e1 :: l1 => ~ req (e1 @ l) rO /\ PCond l l1 end. -Theorem PCond_cons_inv_l : - forall l a l1, PCond l (a::l1) -> ~ NPEeval l a == 0. -intros l a l1 H. -destruct l1; simpl in H |- *; trivial. -destruct H; trivial. +Theorem PCond_cons l a l1 : + PCond l (a :: l1) <-> ~ a @ l == 0 /\ PCond l l1. +Proof. +destruct l1. +- simpl. split; [split|destruct 1]; trivial. +- reflexivity. Qed. -Theorem PCond_cons_inv_r : forall l a l1, PCond l (a :: l1) -> PCond l l1. -intros l a l1 H. -destruct l1; simpl in H |- *; trivial. -destruct H; trivial. +Theorem PCond_cons_inv_l l a l1 : PCond l (a::l1) -> ~ a @ l == 0. +Proof. +rewrite PCond_cons. now destruct 1. Qed. -Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1. -intros l l1 l2; elim l1; simpl app. - simpl; auto. - destruct l0; simpl in *. - destruct l2; firstorder. - firstorder. +Theorem PCond_cons_inv_r l a l1 : PCond l (a :: l1) -> PCond l l1. +Proof. +rewrite PCond_cons. now destruct 1. Qed. -Theorem PCond_app_inv_r: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l2. -intros l l1 l2; elim l1; simpl app; auto. -intros a l0 H H0; apply H; apply PCond_cons_inv_r with ( 1 := H0 ). +Theorem PCond_app l l1 l2 : + PCond l (l1 ++ l2) <-> PCond l l1 /\ PCond l l2. +Proof. +induction l1. +- simpl. split; [split|destruct 1]; trivial. +- simpl app. rewrite !PCond_cons, IHl1. symmetry; apply and_assoc. Qed. + (* An unsatisfiable condition: issued when a division by zero is detected *) Definition absurd_PCond := cons (PEc cO) nil. Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond. +Proof. unfold absurd_PCond; simpl. red; intros. apply H. -apply (morph0 CRmorph). +apply phi_0. Qed. (*************************************************************************** @@ -693,167 +806,124 @@ Qed. ***************************************************************************) -Fixpoint isIn (e1:PExpr C) (p1:positive) - (e2:PExpr C) (p2:positive) {struct e2}: option (N * PExpr C) := +Definition default_isIn e1 p1 e2 p2 := + if PExpr_eq e1 e2 then + match Z.pos_sub p1 p2 with + | Zpos p => Some (Npos p, PEc cI) + | Z0 => Some (N0, PEc cI) + | Zneg p => Some (N0, e2 ^^ Npos p) + end + else None. + +Fixpoint isIn e1 p1 e2 p2 {struct e2}: option (N * PExpr C) := match e2 with - | PEmul e3 e4 => + | e3 * e4 => match isIn e1 p1 e3 p2 with - | Some (N0, e5) => Some (N0, NPEmul e5 (NPEpow e4 (Npos p2))) + | Some (N0, e5) => Some (N0, e5 ** (e4 ^^ Npos p2)) | Some (Npos p, e5) => match isIn e1 p e4 p2 with - | Some (n, e6) => Some (n, NPEmul e5 e6) - | None => Some (Npos p, NPEmul e5 (NPEpow e4 (Npos p2))) + | Some (n, e6) => Some (n, e5 ** e6) + | None => Some (Npos p, e5 ** (e4 ^^ Npos p2)) end | None => match isIn e1 p1 e4 p2 with - | Some (n, e5) => Some (n,NPEmul (NPEpow e3 (Npos p2)) e5) + | Some (n, e5) => Some (n, (e3 ^^ Npos p2) ** e5) | None => None end end - | PEpow e3 N0 => None - | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2) - | _ => - if PExpr_eq e1 e2 then - match Z.pos_sub p1 p2 with - | Zpos p => Some (Npos p, PEc cI) - | Z0 => Some (N0, PEc cI) - | Zneg p => Some (N0, NPEpow e2 (Npos p)) - end - else None - end. + | e3 ^ N0 => None + | e3 ^ Npos p3 => isIn e1 p1 e3 (Pos.mul p3 p2) + | _ => default_isIn e1 p1 e2 p2 + end%poly. Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end. Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end. - Notation pow_pos_add := - (Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)). - Lemma Z_pos_sub_gt p q : (p > q)%positive -> Z.pos_sub p q = Zpos (p - q). Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed. Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption. - Lemma isIn_correct_aux : forall l e1 e2 p1 p2, - match - (if PExpr_eq e1 e2 then - match Z.sub (Zpos p1) (Zpos p2) with - | Zpos p => Some (Npos p, PEc cI) - | Z0 => Some (N0, PEc cI) - | Zneg p => Some (N0, NPEpow e2 (Npos p)) - end - else None) - with + Lemma default_isIn_ok e1 e2 p1 p2 : + match default_isIn e1 p1 e2 p2 with | Some(n, e3) => - NPEeval l (PEpow e2 (Npos p2)) == - NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\ - (Zpos p1 > NtoZ n)%Z - | _ => True + let n' := ZtoN (Zpos p1 - NtoZ n) in + (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly + /\ (Zpos p1 > NtoZ n)%Z + | _ => True end. Proof. - intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2); - case (PExpr_eq e1 e2); simpl; auto; intros H. + unfold default_isIn. + case PExpr_eq_spec; trivial. intros EQ. rewrite Z.pos_sub_spec. - case Pos.compare_spec;intros;simpl. - - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity. - subst. rewrite H by trivial. ring [ (morph1 CRmorph)]. - - fold (p2 - p1 =? 1)%positive. - fold (NPEpow e2 (Npos (p2 - p1))). - rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. split. 2:reflexivity. - rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add. - - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite H;trivial. - rewrite Z.pos_sub_gt by now apply Pos.sub_decr. - replace (p1 - (p1 - p2))%positive with p2; - [| rewrite Pos.sub_sub_distr, Pos.add_comm; - auto using Pos.add_sub, Pos.sub_decr ]. - split. - simpl. ring [ (morph1 CRmorph)]. - now apply Z.lt_gt, Pos.sub_decr. -Qed. - -Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2). -induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl. -ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto. -Qed. - - -Theorem isIn_correct: forall l e1 p1 e2 p2, + case Pos.compare_spec;intros H; split; try reflexivity. + - simpl. now rewrite PE_1_r, H, EQ. + - rewrite NPEpow_ok, EQ, <- PEpow_add_r. f_equiv. + simpl. f_equiv. now rewrite Pos.add_comm, Pos.sub_add. + - simpl. rewrite PE_1_r, EQ. f_equiv. + rewrite Z.pos_sub_gt by now apply Pos.sub_decr. simpl. f_equiv. + rewrite Pos.sub_sub_distr, Pos.add_comm; trivial. + rewrite Pos.add_sub; trivial. + apply Pos.sub_decr; trivial. + - simpl. now apply Z.lt_gt, Pos.sub_decr. +Qed. + +Ltac npe_simpl := rewrite ?NPEmul_ok, ?NPEpow_ok, ?PEpow_mul_l. +Ltac npe_ring := intro l; simpl; ring. + +Theorem isIn_ok e1 p1 e2 p2 : match isIn e1 p1 e2 p2 with | Some(n, e3) => - NPEeval l (PEpow e2 (Npos p2)) == - NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\ - (Zpos p1 > NtoZ n)%Z + let n' := ZtoN (Zpos p1 - NtoZ n) in + (e2 ^ N.pos p2 === e1 ^ n' * e3)%poly + /\ (Zpos p1 > NtoZ n)%Z | _ => True end. Proof. Opaque NPEpow. -intros l e1 p1 e2; generalize p1;clear p1;elim e2; intros; - try (refine (isIn_correct_aux l e1 _ p1 p2);fail);simpl isIn. -generalize (H p1 p2);clear H;destruct (isIn e1 p1 p p2). destruct p3. -destruct n. - simpl. rewrite NPEmul_correct. simpl; rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. - rewrite pow_pos_mul;intros (H,H1);split;[ring[H]|trivial]. - generalize (H0 p4 p2);clear H0;destruct (isIn e1 p4 p0 p2). destruct p5. - destruct n;simpl. - rewrite NPEmul_correct;repeat rewrite pow_th.(rpow_pow_N);simpl. - intros (H1,H2) (H3,H4). - simpl_pos_sub. simpl in H3. - rewrite pow_pos_mul. rewrite H1;rewrite H3. - assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 * - (pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) == - pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) * - NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H. - rewrite <- pow_pos_add. - rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4). - split. symmetry;apply ARth.(ARmul_assoc). reflexivity. - repeat rewrite pow_th.(rpow_pow_N);simpl. - intros (H1,H2) (H3,H4). - simpl_pos_sub. simpl in H1, H3. - assert (Zpos p1 > Zpos p6)%Z. - apply Zgt_trans with (Zpos p4). exact H4. exact H2. - simpl_pos_sub. - split. 2:exact H. - rewrite pow_pos_mul. simpl;rewrite H1;rewrite H3. - assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 * - (pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) == - pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) * - NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0. - rewrite <- pow_pos_add. - replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive. - rewrite NPEmul_correct. simpl;ring. - assert - (Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z. - change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z). - rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)). - simpl. rewrite Z.pos_sub_diag. simpl. reflexivity. - unfold Z.sub, Z.opp in H0. simpl in H0. - simpl_pos_sub. inversion H0; trivial. - simpl. repeat rewrite pow_th.(rpow_pow_N). - intros H1 (H2,H3). simpl_pos_sub. - rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl. - simpl in H2. rewrite pow_th.(rpow_pow_N);simpl. - rewrite pow_pos_mul. split. ring [H2]. exact H3. - generalize (H0 p1 p2);clear H0;destruct (isIn e1 p1 p0 p2). destruct p3. - destruct n;simpl. rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. - intros (H1,H2);split;trivial. rewrite pow_pos_mul;ring [H1]. - rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl. - repeat rewrite pow_th.(rpow_pow_N);simpl. rewrite pow_pos_mul. - intros (H1, H2);rewrite H1;split. - simpl_pos_sub. simpl in H1;ring [H1]. trivial. - trivial. - destruct n. trivial. - generalize (H p1 (p0*p2)%positive);clear H;destruct (isIn e1 p1 p (p0*p2)). destruct p3. - destruct n;simpl. repeat rewrite pow_th.(rpow_pow_N). simpl. - intros (H1,H2);split. rewrite pow_pos_pow_pos. trivial. trivial. - repeat rewrite pow_th.(rpow_pow_N). simpl. - intros (H1,H2);split;trivial. - rewrite pow_pos_pow_pos;trivial. - trivial. +revert p1 p2. +induction e2; intros p1 p2; + try refine (default_isIn_ok e1 _ p1 p2); simpl isIn. +- specialize (IHe2_1 p1 p2). + destruct isIn as [([|p],e)|]. + + split; [|reflexivity]. + clear IHe2_2. + destruct IHe2_1 as (IH,_). + npe_simpl. rewrite IH. npe_ring. + + specialize (IHe2_2 p p2). + destruct isIn as [([|p'],e')|]. + * destruct IHe2_1 as (IH1,GT1). + destruct IHe2_2 as (IH2,GT2). + split; [|simpl; apply Zgt_trans with (Z.pos p); trivial]. + npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl. + replace (N.pos p1) with (N.pos p + N.pos (p1 - p))%N. + rewrite PEpow_add_r; npe_ring. + { simpl. f_equal. rewrite Pos.add_comm, Pos.sub_add. trivial. + now apply Pos.gt_lt. } + * destruct IHe2_1 as (IH1,GT1). + destruct IHe2_2 as (IH2,GT2). + assert (Z.pos p1 > Z.pos p')%Z by (now apply Zgt_trans with (Zpos p)). + split; [|simpl; trivial]. + npe_simpl. rewrite IH1, IH2. simpl. simpl_pos_sub. simpl. + replace (N.pos (p1 - p')) with (N.pos (p1 - p) + N.pos (p - p'))%N. + rewrite PEpow_add_r; npe_ring. + { simpl. f_equal. rewrite Pos.add_sub_assoc, Pos.sub_add; trivial. + now apply Pos.gt_lt. + now apply Pos.gt_lt. } + * destruct IHe2_1 as (IH,GT). split; trivial. + npe_simpl. rewrite IH. npe_ring. + + specialize (IHe2_2 p1 p2). + destruct isIn as [(n,e)|]; trivial. + destruct IHe2_2 as (IH,GT). split; trivial. + set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d. + npe_simpl. rewrite IH. npe_ring. +- destruct n; trivial. + specialize (IHe2 p1 (p * p2)%positive). + destruct isIn as [(n,e)|]; trivial. + destruct IHe2 as (IH,GT). split; trivial. + set (d := ZtoN (Z.pos p1 - NtoZ n)) in *; clearbody d. + now rewrite <- PEpow_mul_r. Qed. Record rsplit : Type := mk_rsplit { @@ -866,90 +936,90 @@ Notation left := rsplit_left. Notation right := rsplit_right. Notation common := rsplit_common. -Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit := +Fixpoint split_aux e1 p e2 {struct e1}: rsplit := match e1 with - | PEmul e3 e4 => + | e3 * e4 => let r1 := split_aux e3 p e2 in let r2 := split_aux e4 p (right r1) in - mk_rsplit (NPEmul (left r1) (left r2)) - (NPEmul (common r1) (common r2)) + mk_rsplit (left r1 ** left r2) + (common r1 ** common r2) (right r2) - | PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2 - | PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2 + | e3 ^ N0 => mk_rsplit (PEc cI) (PEc cI) e2 + | e3 ^ Npos p3 => split_aux e3 (Pos.mul p3 p) e2 | _ => match isIn e1 p e2 xH with - | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3 - | Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3 - | None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2 + | Some (N0,e3) => mk_rsplit (PEc cI) (e1 ^^ Npos p) e3 + | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 + | None => mk_rsplit (e1 ^^ Npos p) (PEc cI) e2 end - end. + end%poly. -Lemma split_aux_correct_1 : forall l e1 p e2, - let res := match isIn e1 p e2 xH with - | Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3 - | Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3 - | None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2 - end in - NPEeval l (PEpow e1 (Npos p)) == NPEeval l (NPEmul (left res) (common res)) - /\ - NPEeval l e2 == NPEeval l (NPEmul (right res) (common res)). -Proof. - intros. unfold res;clear res; generalize (isIn_correct l e1 p e2 xH). - destruct (isIn e1 p e2 1). destruct p0. +Lemma split_aux_ok1 e1 p e2 : + (let res := match isIn e1 p e2 xH with + | Some (N0,e3) => mk_rsplit (PEc cI) (e1 ^^ Npos p) e3 + | Some (Npos q, e3) => mk_rsplit (e1 ^^ Npos q) (e1 ^^ Npos (p - q)) e3 + | None => mk_rsplit (e1 ^^ Npos p) (PEc cI) e2 + end + in + e1 ^ Npos p === left res * common res + /\ e2 === right res * common res)%poly. +Proof. Opaque NPEpow NPEmul. - destruct n;simpl; - (repeat rewrite NPEmul_correct;simpl; - repeat rewrite NPEpow_correct;simpl; - repeat rewrite pow_th.(rpow_pow_N);simpl). - intros (H, Hgt);split;try ring [H CRmorph.(morph1)]. - intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H]. - apply Z.gt_lt in Hgt. - now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add. - simpl;intros. repeat rewrite NPEmul_correct;simpl. - rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)]. -Qed. - -Theorem split_aux_correct: forall l e1 p e2, - NPEeval l (PEpow e1 (Npos p)) == - NPEeval l (NPEmul (left (split_aux e1 p e2)) (common (split_aux e1 p e2))) -/\ - NPEeval l e2 == NPEeval l (NPEmul (right (split_aux e1 p e2)) - (common (split_aux e1 p e2))). -Proof. -intros l; induction e1;intros k e2; try refine (split_aux_correct_1 l _ k e2);simpl. -generalize (IHe1_1 k e2); clear IHe1_1. -generalize (IHe1_2 k (rsplit_right (split_aux e1_1 k e2))); clear IHe1_2. -simpl. repeat (rewrite NPEmul_correct;simpl). -repeat rewrite pow_th.(rpow_pow_N);simpl. -intros (H1,H2) (H3,H4);split. -rewrite pow_pos_mul. rewrite H1;rewrite H3. ring. -rewrite H4;rewrite H2;ring. -destruct n;simpl. -split. repeat rewrite pow_th.(rpow_pow_N);simpl. -rewrite NPEmul_correct. simpl. - induction k;simpl;try ring [CRmorph.(morph1)]; ring [IHk CRmorph.(morph1)]. - rewrite NPEmul_correct;simpl. ring [CRmorph.(morph1)]. -generalize (IHe1 (p*k)%positive e2);clear IHe1;simpl. -repeat rewrite NPEmul_correct;simpl. -repeat rewrite pow_th.(rpow_pow_N);simpl. -rewrite pow_pos_pow_pos. intros [H1 H2];split;ring [H1 H2]. + intros. unfold res;clear res; generalize (isIn_ok e1 p e2 xH). + destruct (isIn e1 p e2 1) as [([|p'],e')|]; simpl. + - intros (H1,H2); split; npe_simpl. + + now rewrite PE_1_l. + + rewrite PEpow_1_r in H1. rewrite H1. npe_ring. + - intros (H1,H2); split; npe_simpl. + + rewrite <- PEpow_add_r. f_equiv. simpl. f_equal. + rewrite Pos.add_comm, Pos.sub_add; trivial. + now apply Z.gt_lt in H2. + + rewrite PEpow_1_r in H1. rewrite H1. simpl_pos_sub. simpl. npe_ring. + - intros _; split; npe_simpl; now rewrite PE_1_r. +Qed. + +Theorem split_aux_ok: forall e1 p e2, + (e1 ^ Npos p === left (split_aux e1 p e2) * common (split_aux e1 p e2) + /\ e2 === right (split_aux e1 p e2) * common (split_aux e1 p e2))%poly. +Proof. +induction e1;intros k e2; try refine (split_aux_ok1 _ k e2);simpl. +destruct (IHe1_1 k e2) as (H1,H2). +destruct (IHe1_2 k (right (split_aux e1_1 k e2))) as (H3,H4). +clear IHe1_1 IHe1_2. +- npe_simpl; split. + * rewrite H1, H3. npe_ring. + * rewrite H2 at 1. rewrite H4 at 1. npe_ring. +- destruct n; simpl. + + rewrite PEpow_0_r, PEpow_1_l, !PE_1_r. now split. + + rewrite <- PEpow_mul_r. simpl. apply IHe1. Qed. Definition split e1 e2 := split_aux e1 xH e2. -Theorem split_correct_l: forall l e1 e2, - NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2)) - (common (split e1 e2))). +Theorem split_ok_l e1 e2 : + (e1 === left (split e1 e2) * common (split e1 e2))%poly. Proof. -intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl. -rewrite pow_th.(rpow_pow_N);simpl;auto. +destruct (split_aux_ok e1 xH e2) as (H,_). now rewrite <- H, PEpow_1_r. Qed. -Theorem split_correct_r: forall l e1 e2, - NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2)) - (common (split e1 e2))). +Theorem split_ok_r e1 e2 : + (e2 === right (split e1 e2) * common (split e1 e2))%poly. Proof. -intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl;auto. +destruct (split_aux_ok e1 xH e2) as (_,H). trivial. +Qed. + +Lemma split_nz_l l e1 e2 : + ~ e1 @ l == 0 -> ~ left (split e1 e2) @ l == 0. +Proof. + intros H. contradict H. rewrite (split_ok_l e1 e2); simpl. + now rewrite H, rmul_0_l. +Qed. + +Lemma split_nz_r l e1 e2 : + ~ e2 @ l == 0 -> ~ right (split e1 e2) @ l == 0. +Proof. + intros H. contradict H. rewrite (split_ok_r e1 e2); simpl. + now rewrite H, rmul_0_l. Qed. Fixpoint Fnorm (e : FExpr) : linear := @@ -961,26 +1031,25 @@ Fixpoint Fnorm (e : FExpr) : linear := let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear - (NPEadd (NPEmul (num x) (right s)) (NPEmul (num y) (left s))) - (NPEmul (left s) (NPEmul (right s) (common s))) - (condition x ++ condition y) - + ((num x ** right s) ++ (num y ** left s)) + (left s ** (right s ** common s)) + (condition x ++ condition y)%list | FEsub e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s := split (denum x) (denum y) in mk_linear - (NPEsub (NPEmul (num x) (right s)) (NPEmul (num y) (left s))) - (NPEmul (left s) (NPEmul (right s) (common s))) - (condition x ++ condition y) + ((num x ** right s) -- (num y ** left s)) + (left s ** (right s ** common s)) + (condition x ++ condition y)%list | FEmul e1 e2 => let x := Fnorm e1 in let y := Fnorm e2 in let s1 := split (num x) (denum y) in let s2 := split (num y) (denum x) in - mk_linear (NPEmul (left s1) (left s2)) - (NPEmul (right s2) (right s1)) - (condition x ++ condition y) + mk_linear (left s1 ** left s2) + (right s2 ** right s1) + (condition x ++ condition y)%list | FEopp e1 => let x := Fnorm e1 in mk_linear (NPEopp (num x)) (denum x) (condition x) @@ -992,15 +1061,14 @@ Fixpoint Fnorm (e : FExpr) : linear := let y := Fnorm e2 in let s1 := split (num x) (num y) in let s2 := split (denum x) (denum y) in - mk_linear (NPEmul (left s1) (right s2)) - (NPEmul (left s2) (right s1)) - (num y :: condition x ++ condition y) + mk_linear (left s1 ** right s2) + (left s2 ** right s1) + (num y :: condition x ++ condition y)%list | FEpow e1 n => let x := Fnorm e1 in - mk_linear (NPEpow (num x) n) (NPEpow (denum x) n) (condition x) + mk_linear ((num x)^^n) ((denum x)^^n) (condition x) end. - (* Example *) (* Eval compute @@ -1010,93 +1078,29 @@ Eval compute (FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))). *) - Lemma pow_pos_not_0 : forall x, ~x==0 -> forall p, ~pow_pos rmul x p == 0. +Theorem Pcond_Fnorm l e : + PCond l (condition (Fnorm e)) -> ~ (denum (Fnorm e))@l == 0. Proof. - induction p;simpl. - intro Hp;assert (H1 := @rmul_reg_l _ (pow_pos rmul x p * pow_pos rmul x p) 0 H). - apply IHp. - rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp). - reflexivity. - rewrite H1. ring. rewrite Hp;ring. - intro Hp;apply IHp. rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp). - reflexivity. rewrite Hp;ring. trivial. -Qed. - -Theorem Pcond_Fnorm: - forall l e, - PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0. -intros l e; elim e. - simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. - simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO. - intros e1 Hrec1 e2 Hrec2 Hcond. - simpl condition in Hcond. - simpl denum. - rewrite NPEmul_correct. - simpl. - apply field_is_integral_domain. - intros HH; case Hrec1; auto. - apply PCond_app_inv_l with (1 := Hcond). - rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - intros HH; case Hrec2; auto. - apply PCond_app_inv_r with (1 := Hcond). - rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. - intros e1 Hrec1 e2 Hrec2 Hcond. - simpl condition in Hcond. - simpl denum. - rewrite NPEmul_correct. - simpl. - apply field_is_integral_domain. - intros HH; case Hrec1; auto. - apply PCond_app_inv_l with (1 := Hcond). - rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - intros HH; case Hrec2; auto. - apply PCond_app_inv_r with (1 := Hcond). - rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto. - intros e1 Hrec1 e2 Hrec2 Hcond. - simpl condition in Hcond. - simpl denum. - rewrite NPEmul_correct. - simpl. - apply field_is_integral_domain. - intros HH; apply Hrec1. - apply PCond_app_inv_l with (1 := Hcond). - rewrite (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - intros HH; apply Hrec2. - apply PCond_app_inv_r with (1 := Hcond). - rewrite (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - intros e1 Hrec1 Hcond. - simpl condition in Hcond. - simpl denum. - auto. - intros e1 Hrec1 Hcond. - simpl condition in Hcond. - simpl denum. - apply PCond_cons_inv_l with (1:=Hcond). - intros e1 Hrec1 e2 Hrec2 Hcond. - simpl condition in Hcond. - simpl denum. - rewrite NPEmul_correct. - simpl. - apply field_is_integral_domain. - intros HH; apply Hrec1. - specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1. - apply PCond_app_inv_l with (1 := Hcond1). - rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - intros HH; apply PCond_cons_inv_l with (1:=Hcond). - rewrite (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2))). - rewrite NPEmul_correct; simpl; rewrite HH; ring. - simpl;intros e1 Hrec1 n Hcond. - rewrite NPEpow_correct. - simpl;rewrite pow_th.(rpow_pow_N). - destruct n;simpl;intros. - apply AFth.(AF_1_neq_0). apply pow_pos_not_0;auto. -Qed. -Hint Resolve Pcond_Fnorm. +induction e; simpl condition; rewrite ?PCond_cons, ?PCond_app; + simpl denum; intros (Hc1,Hc2) || intros Hc; rewrite ?NPEmul_ok. +- simpl; intros. rewrite phi_1; exact rI_neq_rO. +- simpl; intros. rewrite phi_1; exact rI_neq_rO. +- rewrite <- split_ok_r. simpl. apply field_is_integral_domain. + + apply split_nz_l, IHe1, Hc1. + + apply IHe2, Hc2. +- rewrite <- split_ok_r. simpl. apply field_is_integral_domain. + + apply split_nz_l, IHe1, Hc1. + + apply IHe2, Hc2. +- simpl. apply field_is_integral_domain. + + apply split_nz_r, IHe1, Hc1. + + apply split_nz_r, IHe2, Hc2. +- now apply IHe. +- trivial. +- destruct Hc2 as (Hc2,_). simpl. apply field_is_integral_domain. + + apply split_nz_l, IHe1, Hc2. + + apply split_nz_r, Hc1. +- rewrite NPEpow_ok. apply PEpow_nz, IHe, Hc. +Qed. (*************************************************************************** @@ -1105,154 +1109,101 @@ Hint Resolve Pcond_Fnorm. ***************************************************************************) -Theorem Fnorm_FEeval_PEeval: - forall l fe, +Ltac uneval := + repeat match goal with + | |- context [ ?x @ ?l * ?y @ ?l ] => change (x@l * y@l) with ((x*y)@l) + | |- context [ ?x @ ?l + ?y @ ?l ] => change (x@l + y@l) with ((x+y)@l) + end. + +Theorem Fnorm_FEeval_PEeval l fe: PCond l (condition (Fnorm fe)) -> - FEeval l fe == NPEeval l (num (Fnorm fe)) / NPEeval l (denum (Fnorm fe)). -Proof. -intros l fe; elim fe; simpl. -intros c H; rewrite CRmorph.(morph1); apply rdiv1. -intros p H; rewrite CRmorph.(morph1); apply rdiv1. -intros e1 He1 e2 He2 HH. -assert (HH1: PCond l (condition (Fnorm e1))). -apply PCond_app_inv_l with ( 1 := HH ). -assert (HH2: PCond l (condition (Fnorm e2))). -apply PCond_app_inv_r with ( 1 := HH ). -rewrite (He1 HH1); rewrite (He2 HH2). -rewrite NPEadd_correct; simpl. -repeat rewrite NPEmul_correct; simpl. -generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))) - (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))). -repeat rewrite NPEmul_correct; simpl. -intros U1 U2; rewrite U1; rewrite U2. -apply rdiv2b; auto. - rewrite <- U1; auto. - rewrite <- U2; auto. - -intros e1 He1 e2 He2 HH. -assert (HH1: PCond l (condition (Fnorm e1))). -apply PCond_app_inv_l with ( 1 := HH ). -assert (HH2: PCond l (condition (Fnorm e2))). -apply PCond_app_inv_r with ( 1 := HH ). -rewrite (He1 HH1); rewrite (He2 HH2). -rewrite NPEsub_correct; simpl. -repeat rewrite NPEmul_correct; simpl. -generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))) - (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))). -repeat rewrite NPEmul_correct; simpl. -intros U1 U2; rewrite U1; rewrite U2. -apply rdiv3b; auto. - rewrite <- U1; auto. - rewrite <- U2; auto. - -intros e1 He1 e2 He2 HH. -assert (HH1: PCond l (condition (Fnorm e1))). -apply PCond_app_inv_l with ( 1 := HH ). -assert (HH2: PCond l (condition (Fnorm e2))). -apply PCond_app_inv_r with ( 1 := HH ). -rewrite (He1 HH1); rewrite (He2 HH2). -repeat rewrite NPEmul_correct; simpl. -generalize (split_correct_l l (num (Fnorm e1)) (denum (Fnorm e2))) - (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2))) - (split_correct_l l (num (Fnorm e2)) (denum (Fnorm e1))) - (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))). -repeat rewrite NPEmul_correct; simpl. -intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3; - rewrite U4; simpl. -apply rdiv4b; auto. - rewrite <- U4; auto. - rewrite <- U2; auto. - -intros e1 He1 HH. -rewrite NPEopp_correct; simpl; rewrite (He1 HH); apply rdiv5; auto. - -intros e1 He1 HH. -assert (HH1: PCond l (condition (Fnorm e1))). -apply PCond_cons_inv_r with ( 1 := HH ). -rewrite (He1 HH1); apply rdiv6; auto. -apply PCond_cons_inv_l with ( 1 := HH ). - -intros e1 He1 e2 He2 HH. -assert (HH1: PCond l (condition (Fnorm e1))). -apply PCond_app_inv_l with (condition (Fnorm e2)). -apply PCond_cons_inv_r with ( 1 := HH ). -assert (HH2: PCond l (condition (Fnorm e2))). -apply PCond_app_inv_r with (condition (Fnorm e1)). -apply PCond_cons_inv_r with ( 1 := HH ). -rewrite (He1 HH1); rewrite (He2 HH2). -repeat rewrite NPEmul_correct;simpl. -generalize (split_correct_l l (num (Fnorm e1)) (num (Fnorm e2))) - (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2))) - (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))) - (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))). -repeat rewrite NPEmul_correct; simpl. -intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3; - rewrite U4; simpl. -apply rdiv7b; auto. - rewrite <- U3; auto. - rewrite <- U2; auto. -apply PCond_cons_inv_l with ( 1 := HH ). - rewrite <- U4; auto. - -intros e1 He1 n Hcond;assert (He1' := He1 Hcond);clear He1. -repeat rewrite NPEpow_correct;simpl;repeat rewrite pow_th.(rpow_pow_N). -rewrite He1';clear He1'. -destruct n;simpl. apply rdiv1. -generalize (NPEeval l (num (Fnorm e1))) (NPEeval l (denum (Fnorm e1))) - (Pcond_Fnorm _ _ Hcond). -intros r r0 Hdiff;induction p;simpl. -repeat (rewrite <- rdiv4;trivial). -rewrite IHp. reflexivity. -apply pow_pos_not_0;trivial. -apply pow_pos_not_0;trivial. -intro Hp. apply (pow_pos_not_0 Hdiff p). -rewrite (@rmul_reg_l (pow_pos rmul r0 p) (pow_pos rmul r0 p) 0). - reflexivity. apply pow_pos_not_0;trivial. ring [Hp]. -rewrite <- rdiv4;trivial. -rewrite IHp;reflexivity. -apply pow_pos_not_0;trivial. apply pow_pos_not_0;trivial. -reflexivity. -Qed. - -Theorem Fnorm_crossproduct: - forall l fe1 fe2, + FEeval l fe == (num (Fnorm fe)) @ l / (denum (Fnorm fe)) @ l. +Proof. +induction fe; simpl condition; rewrite ?PCond_cons, ?PCond_app; simpl; + intros (Hc1,Hc2) || intros Hc; + try (specialize (IHfe1 Hc1);apply Pcond_Fnorm in Hc1); + try (specialize (IHfe2 Hc2);apply Pcond_Fnorm in Hc2); + try set (F1 := Fnorm fe1) in *; try set (F2 := Fnorm fe2) in *. + +- rewrite phi_1; apply rdiv1. +- rewrite phi_1; apply rdiv1. +- rewrite NPEadd_ok, !NPEmul_ok. simpl. + rewrite <- rdiv2b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial. + now f_equiv. + +- rewrite NPEsub_ok, !NPEmul_ok. simpl. + rewrite <- rdiv3b; uneval; rewrite <- ?split_ok_l, <- ?split_ok_r; trivial. + now f_equiv. + +- rewrite !NPEmul_ok. simpl. + rewrite IHfe1, IHfe2. + rewrite (split_ok_l (num F1) (denum F2) l), + (split_ok_r (num F1) (denum F2) l), + (split_ok_l (num F2) (denum F1) l), + (split_ok_r (num F2) (denum F1) l) in *. + apply rdiv4b; trivial. + +- rewrite NPEopp_ok; simpl; rewrite (IHfe Hc); apply rdiv5. + +- rewrite (IHfe Hc2); apply rdiv6; trivial; + apply Pcond_Fnorm; trivial. + +- destruct Hc2 as (Hc2,Hc3). + rewrite !NPEmul_ok. simpl. + assert (U1 := split_ok_l (num F1) (num F2) l). + assert (U2 := split_ok_r (num F1) (num F2) l). + assert (U3 := split_ok_l (denum F1) (denum F2) l). + assert (U4 := split_ok_r (denum F1) (denum F2) l). + rewrite (IHfe1 Hc2), (IHfe2 Hc3), U1, U2, U3, U4; apply rdiv7b; + rewrite <- ?U2, <- ?U3, <- ?U4; try apply Pcond_Fnorm; trivial. + +- rewrite !NPEpow_ok. simpl. rewrite !rpow_pow, (IHfe Hc). + destruct n; simpl. + + apply rdiv1. + + apply pow_pos_div. apply Pcond_Fnorm; trivial. +Qed. + +Theorem Fnorm_crossproduct l fe1 fe2 : let nfe1 := Fnorm fe1 in let nfe2 := Fnorm fe2 in - NPEeval l (PEmul (num nfe1) (denum nfe2)) == - NPEeval l (PEmul (num nfe2) (denum nfe1)) -> + (num nfe1 * denum nfe2) @ l == (num nfe2 * denum nfe1) @ l -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. -intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2. -rewrite Fnorm_FEeval_PEeval by - apply PCond_app_inv_l with (1 := Hcond). - rewrite Fnorm_FEeval_PEeval by - apply PCond_app_inv_r with (1 := Hcond). - apply cross_product_eq; trivial. - apply Pcond_Fnorm. - apply PCond_app_inv_l with (1 := Hcond). - apply Pcond_Fnorm. - apply PCond_app_inv_r with (1 := Hcond). +Proof. +simpl. rewrite PCond_app. intros Hcrossprod (Hc1,Hc2). +rewrite !Fnorm_FEeval_PEeval; trivial. +apply cross_product_eq; trivial; + apply Pcond_Fnorm; trivial. Qed. (* Correctness lemmas of reflexive tactics *) Notation Ninterp_PElist := (interp_PElist rO radd rmul rsub ropp req phi Cp_phi rpow). Notation Nmk_monpol_list := (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv). -Theorem Fnorm_correct: +Theorem Fnorm_ok: forall n l lpe fe, Ninterp_PElist l lpe -> Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true -> PCond l (condition (Fnorm fe)) -> FEeval l fe == 0. -intros n l lpe fe Hlpe H H1; - apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe H1). -apply rdiv8; auto. -transitivity (NPEeval l (PEc cO)); auto. -rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe);auto. -change (NPEeval l (PEc cO)) with (Pphi 0 radd rmul phi l (Pc cO)). -apply (Peq_ok Rsth Reqe CRmorph);auto. -simpl. apply (morph0 CRmorph); auto. +Proof. +intros n l lpe fe Hlpe H H1. +rewrite (Fnorm_FEeval_PEeval l fe H1). +apply rdiv8. apply Pcond_Fnorm; trivial. +transitivity ((PEc cO)@l); trivial. +rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe); trivial. +change ((PEc cO) @ l) with (Pphi 0 radd rmul phi l (Pc cO)). +apply (Peq_ok Rsth Reqe CRmorph); trivial. Qed. +Notation ring_rw_correct := + (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec). + +Notation ring_rw_pow_correct := + (ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec). + +Notation ring_correct := + (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th). + (* simplify a field expression into a fraction *) (* TODO: simplify when den is constant... *) Definition display_linear l num den := @@ -1261,71 +1212,49 @@ Definition display_linear l num den := Definition display_pow_linear l num den := NPphi_pow l num / NPphi_pow l den. -Theorem Field_rw_correct : - forall n lpe l, +Theorem Field_rw_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)). Proof. - intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. - apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H). - unfold display_linear; apply SRdiv_ext; - eapply (ring_rw_correct Rsth Reqe ARth CRmorph);eauto. + intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. + rewrite (Fnorm_FEeval_PEeval _ _ H). + unfold display_linear; apply rdiv_ext; + eapply ring_rw_correct; eauto. Qed. -Theorem Field_rw_pow_correct : - forall n lpe l, +Theorem Field_rw_pow_correct n lpe l : Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall fe nfe, Fnorm fe = nfe -> PCond l (condition nfe) -> FEeval l fe == display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)). Proof. - intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. - apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H). - unfold display_pow_linear; apply SRdiv_ext; - eapply (ring_rw_pow_correct Rsth Reqe ARth CRmorph);eauto. + intros Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp. + rewrite (Fnorm_FEeval_PEeval _ _ H). + unfold display_pow_linear; apply rdiv_ext; + eapply ring_rw_pow_correct;eauto. Qed. -Theorem Field_correct : - forall n l lpe fe1 fe2, Ninterp_PElist l lpe -> +Theorem Field_correct n l lpe fe1 fe2 : + Ninterp_PElist l lpe -> forall lmp, Nmk_monpol_list lpe = lmp -> forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> - Peq ceqb (Nnorm n lmp (PEmul (num nfe1) (denum nfe2))) - (Nnorm n lmp (PEmul (num nfe2) (denum nfe1))) = true -> + Peq ceqb (Nnorm n lmp (num nfe1 * denum nfe2)) + (Nnorm n lmp (num nfe2 * denum nfe1)) = true -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. -intros n l lpe fe1 fe2 Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp. +intros Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp. apply Fnorm_crossproduct; trivial. -eapply (ring_correct Rsth Reqe ARth CRmorph); eauto. +eapply ring_correct; eauto. Qed. (* simplify a field equation : generate the crossproduct and simplify polynomials *) -Theorem Field_simplify_eq_old_correct : - forall l fe1 fe2 nfe1 nfe2, - Fnorm fe1 = nfe1 -> - Fnorm fe2 = nfe2 -> - NPphi_dev l (Nnorm O nil (PEmul (num nfe1) (denum nfe2))) == - NPphi_dev l (Nnorm O nil (PEmul (num nfe2) (denum nfe1))) -> - PCond l (condition nfe1 ++ condition nfe2) -> - FEeval l fe1 == FEeval l fe2. -Proof. -intros l fe1 fe2 nfe1 nfe2 eq1 eq2 Hcrossprod Hcond; subst nfe1 nfe2. -apply Fnorm_crossproduct; trivial. -match goal with - [ |- NPEeval l ?x == NPEeval l ?y] => - rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I Logic.eq_refl x Logic.eq_refl); - rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec - O nil l I Logic.eq_refl y Logic.eq_refl) - end. -trivial. -Qed. Theorem Field_simplify_eq_correct : forall n l lpe fe1 fe2, @@ -1334,37 +1263,24 @@ Theorem Field_simplify_eq_correct : forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> - NPphi_dev l (Nnorm n lmp (PEmul (num nfe1) (right den))) == - NPphi_dev l (Nnorm n lmp (PEmul (num nfe2) (left den))) -> + NPphi_dev l (Nnorm n lmp (num nfe1 * right den)) == + NPphi_dev l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. -intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; - subst nfe1 nfe2 den lmp. -apply Fnorm_crossproduct; trivial. +intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond. +apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial. simpl. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). -rewrite NPEmul_correct. -rewrite NPEmul_correct. +rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3. +rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3. simpl. -repeat rewrite (ARmul_assoc ARth). -rewrite <-( - let x := PEmul (num (Fnorm fe1)) - (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in -ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe Logic.eq_refl - x Logic.eq_refl) in Hcrossprod. -rewrite <-( - let x := (PEmul (num (Fnorm fe2)) - (rsplit_left - (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in - ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe Logic.eq_refl - x Logic.eq_refl) in Hcrossprod. -simpl in Hcrossprod. -rewrite Hcrossprod. -reflexivity. +rewrite !rmul_assoc. +apply rmul_ext; trivial. +rewrite + (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), + (ring_rw_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl). +rewrite Hlmp. +apply Hcrossprod. Qed. Theorem Field_simplify_eq_pow_correct : @@ -1374,37 +1290,55 @@ Theorem Field_simplify_eq_pow_correct : forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> - NPphi_pow l (Nnorm n lmp (PEmul (num nfe1) (right den))) == - NPphi_pow l (Nnorm n lmp (PEmul (num nfe2) (left den))) -> + NPphi_pow l (Nnorm n lmp (num nfe1 * right den)) == + NPphi_pow l (Nnorm n lmp (num nfe2 * left den)) -> PCond l (condition nfe1 ++ condition nfe2) -> FEeval l fe1 == FEeval l fe2. Proof. -intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond; - subst nfe1 nfe2 den lmp. -apply Fnorm_crossproduct; trivial. +intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond. +apply Fnorm_crossproduct; rewrite ?eq1, ?eq2; trivial. simpl. -rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). -rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))). -rewrite NPEmul_correct. -rewrite NPEmul_correct. +rewrite (split_ok_l (denum nfe1) (denum nfe2) l), eq3. +rewrite (split_ok_r (denum nfe1) (denum nfe2) l), eq3. simpl. -repeat rewrite (ARmul_assoc ARth). -rewrite <-( - let x := PEmul (num (Fnorm fe1)) - (rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in -ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe Logic.eq_refl - x Logic.eq_refl) in Hcrossprod. -rewrite <-( - let x := (PEmul (num (Fnorm fe2)) - (rsplit_left - (split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in - ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l - Hlpe Logic.eq_refl - x Logic.eq_refl) in Hcrossprod. -simpl in Hcrossprod. -rewrite Hcrossprod. -reflexivity. +rewrite !rmul_assoc. +apply rmul_ext; trivial. +rewrite + (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe1 * right den) Logic.eq_refl), + (ring_rw_pow_correct n lpe l Hlpe Logic.eq_refl (num nfe2 * left den) Logic.eq_refl). +rewrite Hlmp. +apply Hcrossprod. +Qed. + +Theorem Field_simplify_aux_ok l fe1 fe2 den : + FEeval l fe1 == FEeval l fe2 -> + split (denum (Fnorm fe1)) (denum (Fnorm fe2)) = den -> + PCond l (condition (Fnorm fe1) ++ condition (Fnorm fe2)) -> + (num (Fnorm fe1) * right den) @ l == (num (Fnorm fe2) * left den) @ l. +Proof. + rewrite PCond_app; intros Hfe Hden (Hc1,Hc2); simpl. + assert (Hc1' := Pcond_Fnorm _ _ Hc1). + assert (Hc2' := Pcond_Fnorm _ _ Hc2). + set (N1 := num (Fnorm fe1)) in *. set (N2 := num (Fnorm fe2)) in *. + set (D1 := denum (Fnorm fe1)) in *. set (D2 := denum (Fnorm fe2)) in *. + assert (~ (common den) @ l == 0). + { intro H. apply Hc1'. + rewrite (split_ok_l D1 D2 l). + rewrite Hden. simpl. ring [H]. } + apply (@rmul_reg_l ((common den) @ l)); trivial. + rewrite !(rmul_comm ((common den) @ l)), <- !rmul_assoc. + change + (N1@l * (right den * common den) @ l == + N2@l * (left den * common den) @ l). + rewrite <- Hden, <- split_ok_l, <- split_ok_r. + apply (@rmul_reg_l (/ D2@l)). { apply rinv_nz; trivial. } + rewrite (rmul_comm (/ D2 @ l)), <- !rmul_assoc. + rewrite <- rdiv_def, rdiv_r_r, rmul_1_r by trivial. + apply (@rmul_reg_l (/ (D1@l))). { apply rinv_nz; trivial. } + rewrite !(rmul_comm (/ D1@l)), <- !rmul_assoc. + rewrite <- !rdiv_def, rdiv_r_r, rmul_1_r by trivial. + rewrite (rmul_comm (/ D2@l)), <- rdiv_def. + unfold N1,N2,D1,D2; rewrite <- !Fnorm_FEeval_PEeval; trivial. Qed. Theorem Field_simplify_eq_pow_in_correct : @@ -1414,47 +1348,17 @@ Theorem Field_simplify_eq_pow_in_correct : forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> - forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 -> - forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 -> + forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> + forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> - PCond l (condition nfe1 ++ condition nfe2) -> + PCond l (condition nfe1 ++ condition nfe2) -> NPphi_pow l np1 == NPphi_pow l np2. Proof. intros. subst nfe1 nfe2 lmp np1 np2. - repeat rewrite (Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec). + rewrite !(Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec). repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl. - assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)). - assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)). - apply (@rmul_reg_l (NPEeval l (rsplit_common den))). - intro Heq;apply N1. - rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). - rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq]. - repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))). - repeat rewrite <- ARth.(ARmul_assoc). - change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with - (NPEeval l (PEmul (rsplit_right den) (rsplit_common den))). - change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with - (NPEeval l (PEmul (rsplit_left den) (rsplit_common den))). - repeat rewrite <- NPEmul_correct. rewrite <- H3. rewrite <- split_correct_l. - rewrite <- split_correct_r. - apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))). - intro Heq; apply AFth.(AF_1_neq_0). - rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial. - ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))). - repeat rewrite <- (ARth.(ARmul_assoc)). - rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial. - apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))). - intro Heq; apply AFth.(AF_1_neq_0). - rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial. - ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))). - repeat rewrite <- (ARth.(ARmul_assoc)). - repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial. - rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp. - rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))). - repeat rewrite <- (AFth.(AFdiv_def)). - repeat rewrite <- Fnorm_FEeval_PEeval ; trivial. - apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7). + apply Field_simplify_aux_ok; trivial. Qed. Theorem Field_simplify_eq_in_correct : @@ -1464,47 +1368,16 @@ forall n l lpe fe1 fe2, forall nfe1, Fnorm fe1 = nfe1 -> forall nfe2, Fnorm fe2 = nfe2 -> forall den, split (denum nfe1) (denum nfe2) = den -> - forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 -> - forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 -> + forall np1, Nnorm n lmp (num nfe1 * right den) = np1 -> + forall np2, Nnorm n lmp (num nfe2 * left den) = np2 -> FEeval l fe1 == FEeval l fe2 -> - PCond l (condition nfe1 ++ condition nfe2) -> - NPphi_dev l np1 == - NPphi_dev l np2. + PCond l (condition nfe1 ++ condition nfe2) -> + NPphi_dev l np1 == NPphi_dev l np2. Proof. intros. subst nfe1 nfe2 lmp np1 np2. - repeat rewrite (Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec). - repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl. - assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)). - assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)). - apply (@rmul_reg_l (NPEeval l (rsplit_common den))). - intro Heq;apply N1. - rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))). - rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq]. - repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))). - repeat rewrite <- ARth.(ARmul_assoc). - change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with - (NPEeval l (PEmul (rsplit_right den) (rsplit_common den))). - change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with - (NPEeval l (PEmul (rsplit_left den) (rsplit_common den))). - repeat rewrite <- NPEmul_correct;rewrite <- H3. rewrite <- split_correct_l. - rewrite <- split_correct_r. - apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))). - intro Heq; apply AFth.(AF_1_neq_0). - rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial. - ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))). - repeat rewrite <- (ARth.(ARmul_assoc)). - rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial. - apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))). - intro Heq; apply AFth.(AF_1_neq_0). - rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial. - ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))). - repeat rewrite <- (ARth.(ARmul_assoc)). - repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial. - rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp. - rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))). - repeat rewrite <- (AFth.(AFdiv_def)). - repeat rewrite <- Fnorm_FEeval_PEeval;trivial. - apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7). + rewrite !(Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec). + repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). + apply Field_simplify_aux_ok; trivial. Qed. @@ -1513,7 +1386,7 @@ Section Fcons_impl. Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C). Hypothesis PCond_fcons_inv : forall l a l1, - PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. + PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1. Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := match l with @@ -1521,12 +1394,13 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) := | cons a l1 => Fcons a (Fapp l1 m) end. -Lemma fcons_correct : forall l l1, +Lemma fcons_ok : forall l l1, PCond l (Fapp l1 nil) -> PCond l l1. +Proof. induction l1; simpl; intros. trivial. elim PCond_fcons_inv with (1 := H); intros. - destruct l1; auto. + destruct l1; trivial. split; trivial. apply IHl1; trivial. Qed. End Fcons_impl. @@ -1543,21 +1417,15 @@ Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := end. Theorem PFcons_fcons_inv: - forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -intros l a l1; elim l1; simpl Fcons; auto. -simpl; auto. -intros a0 l0. -generalize (PExpr_eq_semi_correct l a a0); case (PExpr_eq a a0). -intros H H0 H1; split; auto. -rewrite H; auto. -generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. -intros H H0 H1; - assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)). -split. -generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. -apply H0. -generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto. -generalize Hp; case l0; simpl; intuition. + forall l a l1, PCond l (Fcons a l1) -> ~ a @ l == 0 /\ PCond l l1. +Proof. +induction l1 as [|e l1]; simpl Fcons. +- simpl; now split. +- case PExpr_eq_spec; intros H; rewrite !PCond_cons; intros (H1,H2); + repeat split; trivial. + + now rewrite H. + + now apply IHl1. + + now apply IHl1. Qed. (* equality of normal forms rather than syntactic equality *) @@ -1570,23 +1438,16 @@ Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) := end. Theorem PFcons0_fcons_inv: - forall l a l1, PCond l (Fcons0 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -intros l a l1; elim l1; simpl Fcons0; auto. -simpl; auto. -intros a0 l0. -generalize (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th O l nil a a0). simpl. - case (Peq ceqb (Nnorm O nil a) (Nnorm O nil a0)). -intros H H0 H1; split; auto. -rewrite H; auto. -generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. -intros H H0 H1; - assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)). -split. -generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto. -apply H0. -generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto. -clear get_sign get_sign_spec. -generalize Hp; case l0; simpl; intuition. + forall l a l1, PCond l (Fcons0 a l1) -> ~ a @ l == 0 /\ PCond l l1. +Proof. +induction l1 as [|e l1]; simpl Fcons0. +- simpl; now split. +- generalize (ring_correct O l nil a e). lazy zeta; simpl Peq. + case Peq; intros H; rewrite !PCond_cons; intros (H1,H2); + repeat split; trivial. + + now rewrite H. + + now apply IHl1. + + now apply IHl1. Qed. (* split factorized denominators *) @@ -1598,42 +1459,36 @@ Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := end. Theorem PFcons00_fcons_inv: - forall l a l1, PCond l (Fcons00 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). - intros p H p0 H0 l1 H1. - simpl in H1. - case (H _ H1); intros H2 H3. - case (H0 _ H3); intros H4 H5; split; auto. - simpl. - apply field_is_integral_domain; trivial. - simpl;intros. rewrite pow_th.(rpow_pow_N). - destruct (H _ H0);split;auto. - destruct n;simpl. apply AFth.(AF_1_neq_0). - apply pow_pos_not_0;trivial. + forall l a l1, PCond l (Fcons00 a l1) -> ~ a @ l == 0 /\ PCond l l1. +Proof. +intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail). +- intros p H p0 H0 l1 H1. + simpl in H1. + destruct (H _ H1) as (H2,H3). + destruct (H0 _ H3) as (H4,H5). split; trivial. + simpl. + apply field_is_integral_domain; trivial. +- intros. destruct (H _ H0). split; trivial. + apply PEpow_nz; trivial. Qed. Definition Pcond_simpl_gen := - fcons_correct _ PFcons00_fcons_inv. + fcons_ok _ PFcons00_fcons_inv. (* Specific case when the equality test of coefs is complete w.r.t. the field equality: non-zero coefs can be eliminated, and opposite can be simplified (if -1 <> 0) *) -Hypothesis ceqb_complete : forall c1 c2, phi c1 == phi c2 -> ceqb c1 c2 = true. +Hypothesis ceqb_complete : forall c1 c2, [c1] == [c2] -> ceqb c1 c2 = true. -Lemma ceqb_rect_complete : forall c1 c2 (A:Type) (x y:A) (P:A->Type), - (phi c1 == phi c2 -> P x) -> - (~ phi c1 == phi c2 -> P y) -> - P (if ceqb c1 c2 then x else y). +Lemma ceqb_spec' c1 c2 : Bool.reflect ([c1] == [c2]) (ceqb c1 c2). Proof. -intros. -generalize (fun h => X (morph_eq CRmorph c1 c2 h)). -generalize (@ceqb_complete c1 c2). -case (c1 ?=! c2); auto; intros. -apply X0. -red; intro. -absurd (false = true); auto; discriminate. +assert (H := morph_eq CRmorph c1 c2). +assert (H' := @ceqb_complete c1 c2). +destruct (ceqb c1 c2); constructor. +- now apply H. +- intro E. specialize (H' E). discriminate. Qed. Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := @@ -1646,47 +1501,41 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) := end. Theorem PFcons1_fcons_inv: - forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. -intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail). - simpl; intros c l1. - apply ceqb_rect_complete; intros. - elim (@absurd_PCond_bottom l H0). - split; trivial. - rewrite <- (morph0 CRmorph); trivial. - intros p H p0 H0 l1 H1. - simpl in H1. - case (H _ H1); intros H2 H3. - case (H0 _ H3); intros H4 H5; split; auto. - simpl. - apply field_is_integral_domain; trivial. - simpl; intros p H l1. - apply ceqb_rect_complete; intros. - elim (@absurd_PCond_bottom l H1). - destruct (H _ H1). + forall l a l1, PCond l (Fcons1 a l1) -> ~ a @ l == 0 /\ PCond l l1. +Proof. +intros l a; elim a; try (intros; apply PFcons0_fcons_inv; trivial; fail). +- simpl; intros c l1. + case ceqb_spec'; intros H H0. + + elim (@absurd_PCond_bottom l H0). + + split; trivial. rewrite <- phi_0; trivial. +- intros p H p0 H0 l1 H1. simpl in H1. + destruct (H _ H1) as (H2,H3). + destruct (H0 _ H3) as (H4,H5). + split; trivial. simpl. apply field_is_integral_domain; trivial. +- simpl; intros p H l1. + case ceqb_spec'; intros H0 H1. + + elim (@absurd_PCond_bottom l H1). + + destruct (H _ H1). split; trivial. apply ropp_neq_0; trivial. - rewrite (morph_opp CRmorph) in H0. - rewrite (morph1 CRmorph) in H0. - rewrite (morph0 CRmorph) in H0. - trivial. - intros;simpl. destruct (H _ H0);split;trivial. - rewrite pow_th.(rpow_pow_N). destruct n;simpl. - apply AFth.(AF_1_neq_0). apply pow_pos_not_0;trivial. + rewrite (morph_opp CRmorph), phi_0, phi_1 in H0. trivial. +- intros. destruct (H _ H0);split;trivial. apply PEpow_nz; trivial. Qed. -Definition Fcons2 e l := Fcons1 (PExpr_simp e) l. +Definition Fcons2 e l := Fcons1 (PEsimp e) l. Theorem PFcons2_fcons_inv: - forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1. + forall l a l1, PCond l (Fcons2 a l1) -> ~ a @ l == 0 /\ PCond l l1. +Proof. unfold Fcons2; intros l a l1 H; split; - case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto. + case (PFcons1_fcons_inv l (PEsimp a) l1); trivial. intros H1 H2 H3; case H1. -transitivity (NPEeval l a); trivial. -apply PExpr_simp_correct. +transitivity (a@l); trivial. +apply PEsimp_ok. Qed. Definition Pcond_simpl_complete := - fcons_correct _ PFcons2_fcons_inv. + fcons_ok _ PFcons2_fcons_inv. End Fcons_simpl. @@ -1754,22 +1603,22 @@ Hypothesis S_inj : forall x y, 1+x==1+y -> x==y. Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. -Lemma add_inj_r : forall p x y, +Lemma add_inj_r p x y : gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y. -intros p x y. +Proof. elim p using Pos.peano_ind; simpl; intros. apply S_inj; trivial. apply H. apply S_inj. - repeat rewrite (ARadd_assoc ARth). + rewrite !(ARadd_assoc ARth). rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial. Qed. -Lemma gen_phiPOS_inj : forall x y, +Lemma gen_phiPOS_inj x y : gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y -> x = y. -intros x y. -repeat rewrite <- (same_gen Rsth Reqe ARth). +Proof. +rewrite <- !(same_gen Rsth Reqe ARth). case (Pos.compare_spec x y). intros. trivial. @@ -1789,9 +1638,10 @@ case (Pos.compare_spec x y). Qed. -Lemma gen_phiN_inj : forall x y, +Lemma gen_phiN_inj x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> x = y. +Proof. destruct x; destruct y; simpl; intros; trivial. elim gen_phiPOS_not_0 with p. symmetry . @@ -1801,7 +1651,7 @@ destruct x; destruct y; simpl; intros; trivial. rewrite gen_phiPOS_inj with (1 := H); trivial. Qed. -Lemma gen_phiN_complete : forall x y, +Lemma gen_phiN_complete x y : gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y -> N.eqb x y = true. Proof. @@ -1820,31 +1670,22 @@ Section Field. Let AFth := F2AF Rsth Reqe Fth. Let ARth := Rth_ARth Rsth Reqe Rth. -Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y. +Lemma ring_S_inj x y : 1+x==1+y -> x==y. +Proof. intros. -transitivity (x + (1 + - (1))). - rewrite (Ropp_def Rth). - symmetry . - apply (ARadd_0_r Rsth ARth). - transitivity (y + (1 + - (1))). - repeat rewrite <- (ARplus_assoc ARth). - repeat rewrite (ARadd_assoc ARth). - apply (Radd_ext Reqe). - repeat rewrite <- (ARadd_comm ARth 1). - trivial. - reflexivity. - rewrite (Ropp_def Rth). - apply (ARadd_0_r Rsth ARth). +rewrite <- (ARadd_0_l ARth x), <- (ARadd_0_l ARth y). +rewrite <- (Ropp_def Rth 1), (ARadd_comm ARth 1). +rewrite <- !(ARadd_assoc ARth). now apply (Radd_ext Reqe). Qed. - - Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. +Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0. Let gen_phiPOS_inject := gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0. -Lemma gen_phiPOS_discr_sgn : forall x y, +Lemma gen_phiPOS_discr_sgn x y : ~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y. +Proof. red; intros. apply gen_phiPOS_not_0 with (y + x)%positive. rewrite (ARgen_phiPOS_add Rsth Reqe ARth). @@ -1857,9 +1698,10 @@ transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y). apply (Ropp_def Rth). Qed. -Lemma gen_phiZ_inj : forall x y, +Lemma gen_phiZ_inj x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> x = y. +Proof. destruct x; destruct y; simpl; intros. trivial. elim gen_phiPOS_not_0 with p. @@ -1890,9 +1732,10 @@ destruct x; destruct y; simpl; intros. reflexivity. Qed. -Lemma gen_phiZ_complete : forall x y, +Lemma gen_phiZ_complete x y : gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y -> Zeq_bool x y = true. +Proof. intros. replace y with x. unfold Zeq_bool. |