aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/setoid_ring/Field_tac.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/Field_tac.v')
-rw-r--r--plugins/setoid_ring/Field_tac.v567
1 files changed, 567 insertions, 0 deletions
diff --git a/plugins/setoid_ring/Field_tac.v b/plugins/setoid_ring/Field_tac.v
new file mode 100644
index 000000000..b31ebda55
--- /dev/null
+++ b/plugins/setoid_ring/Field_tac.v
@@ -0,0 +1,567 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Ring_tac BinList Ring_polynom InitialRing.
+Require Export Field_theory.
+
+ (* syntaxification *)
+ Ltac mkFieldexpr C Cst CstPow radd rmul rsub ropp rdiv rinv rpow t fv :=
+ let rec mkP t :=
+ let f :=
+ match Cst t with
+ | InitialRing.NotConstant =>
+ match t with
+ | (radd ?t1 ?t2) =>
+ fun _ =>
+ let e1 := mkP t1 in
+ let e2 := mkP t2 in constr:(FEadd e1 e2)
+ | (rmul ?t1 ?t2) =>
+ fun _ =>
+ let e1 := mkP t1 in
+ let e2 := mkP t2 in constr:(FEmul e1 e2)
+ | (rsub ?t1 ?t2) =>
+ fun _ =>
+ let e1 := mkP t1 in
+ let e2 := mkP t2 in constr:(FEsub e1 e2)
+ | (ropp ?t1) =>
+ fun _ => let e1 := mkP t1 in constr:(FEopp e1)
+ | (rdiv ?t1 ?t2) =>
+ fun _ =>
+ let e1 := mkP t1 in
+ let e2 := mkP t2 in constr:(FEdiv e1 e2)
+ | (rinv ?t1) =>
+ fun _ => let e1 := mkP t1 in constr:(FEinv e1)
+ | (rpow ?t1 ?n) =>
+ match CstPow n with
+ | InitialRing.NotConstant =>
+ fun _ =>
+ let p := Find_at t fv in
+ constr:(@FEX C p)
+ | ?c => fun _ => let e1 := mkP t1 in constr:(FEpow e1 c)
+ end
+ | _ =>
+ fun _ =>
+ let p := Find_at t fv in
+ constr:(@FEX C p)
+ end
+ | ?c => fun _ => constr:(FEc c)
+ end in
+ f ()
+ in mkP t.
+
+Ltac FFV Cst CstPow add mul sub opp div inv pow t fv :=
+ let rec TFV t fv :=
+ match Cst t with
+ | InitialRing.NotConstant =>
+ match t with
+ | (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
+ | (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
+ | (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
+ | (opp ?t1) => TFV t1 fv
+ | (div ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
+ | (inv ?t1) => TFV t1 fv
+ | (pow ?t1 ?n) =>
+ match CstPow n with
+ | InitialRing.NotConstant =>
+ AddFvTail t fv
+ | _ => TFV t1 fv
+ end
+ | _ => AddFvTail t fv
+ end
+ | _ => fv
+ end
+ in TFV t fv.
+
+(* packaging the field structure *)
+
+(* TODO: inline PackField into field_lookup *)
+Ltac PackField F req Cst_tac Pow_tac L1 L2 L3 L4 cond_ok pre post :=
+ let FLD :=
+ match type of L1 with
+ | context [req (@FEeval ?R ?rO ?radd ?rmul ?rsub ?ropp ?rdiv ?rinv
+ ?C ?phi ?Cpow ?Cp_phi ?rpow _ _) _ ] =>
+ (fun proj =>
+ proj Cst_tac Pow_tac pre post
+ req radd rmul rsub ropp rdiv rinv rpow C L1 L2 L3 L4 cond_ok)
+ | _ => fail 1 "field anomaly: bad correctness lemma (parse)"
+ end in
+ F FLD.
+
+Ltac get_FldPre FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ pre).
+
+Ltac get_FldPost FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ post).
+
+Ltac get_L1 FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ L1).
+
+Ltac get_SimplifyEqLemma FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ L2).
+
+Ltac get_SimplifyLemma FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ L3).
+
+Ltac get_L4 FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ L4).
+
+Ltac get_CondLemma FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ cond_ok).
+
+Ltac get_FldEq FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ req).
+
+Ltac get_FldCarrier FLD :=
+ let req := get_FldEq FLD in
+ relation_carrier req.
+
+Ltac get_RingFV FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ FV Cst_tac Pow_tac radd rmul rsub ropp rpow).
+
+Ltac get_FFV FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ FFV Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow).
+
+Ltac get_RingMeta FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow).
+
+Ltac get_Meta FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ mkFieldexpr C Cst_tac Pow_tac radd rmul rsub ropp rdiv rinv rpow).
+
+Ltac get_Hyp_tac FLD :=
+ FLD ltac:
+ (fun Cst_tac Pow_tac pre post req radd rmul rsub ropp rdiv rinv rpow C
+ L1 L2 L3 L4 cond_ok =>
+ let mkPol := mkPolexpr C Cst_tac Pow_tac radd rmul rsub ropp rpow in
+ fun fv lH => mkHyp_tac C req ltac:(fun t => mkPol t fv) lH).
+
+Ltac get_FEeval FLD :=
+ let L1 := get_L1 FLD in
+ match type of L1 with
+ | context
+ [(@FEeval
+ ?R ?r0 ?add ?mul ?sub ?opp ?div ?inv ?C ?phi ?Cpow ?powphi ?pow _ _)] =>
+ constr:(@FEeval R r0 add mul sub opp div inv C phi Cpow powphi pow)
+ | _ => fail 1 "field anomaly: bad correctness lemma (get_FEeval)"
+ end.
+
+(* simplifying the non-zero condition... *)
+
+Ltac fold_field_cond req :=
+ let rec fold_concl t :=
+ match t with
+ ?x /\ ?y =>
+ let fx := fold_concl x in let fy := fold_concl y in constr:(fx/\fy)
+ | req ?x ?y -> False => constr:(~ req x y)
+ | _ => t
+ end in
+ let ft := fold_concl Get_goal in
+ change ft.
+
+Ltac simpl_PCond FLD :=
+ let req := get_FldEq FLD in
+ let lemma := get_CondLemma FLD in
+ try apply lemma;
+ protect_fv "field_cond";
+ fold_field_cond req;
+ try exact I.
+
+Ltac simpl_PCond_BEURK FLD :=
+ let req := get_FldEq FLD in
+ let lemma := get_CondLemma FLD in
+ apply lemma;
+ protect_fv "field_cond";
+ fold_field_cond req.
+
+(* Rewriting (field_simplify) *)
+Ltac Field_norm_gen f n FLD lH rl :=
+ let mkFV := get_RingFV FLD in
+ let mkFFV := get_FFV FLD in
+ let mkFE := get_Meta FLD in
+ let fv0 := FV_hypo_tac mkFV ltac:(get_FldEq FLD) lH in
+ let lemma_tac fv kont :=
+ let lemma := get_SimplifyLemma FLD in
+ (* reify equations of the context *)
+ let lpe := get_Hyp_tac FLD fv lH in
+ let vlpe := fresh "hyps" in
+ pose (vlpe := lpe);
+ let prh := proofHyp_tac lH in
+ (* compute the normal form of the reified hyps *)
+ let vlmp := fresh "hyps'" in
+ let vlmp_eq := fresh "hyps_eq" in
+ let mk_monpol := get_MonPol lemma in
+ compute_assertion vlmp_eq vlmp (mk_monpol vlpe);
+ (* partially instantiate the lemma *)
+ let lem := fresh "f_rw_lemma" in
+ (assert (lem := lemma n vlpe fv prh vlmp vlmp_eq)
+ || fail "type error when building the rewriting lemma");
+ (* continuation will call main_tac for all reified terms *)
+ kont lem;
+ (* at the end, cleanup *)
+ (clear lem vlmp_eq vlmp vlpe||idtac"Field_norm_gen:cleanup failed") in
+ (* each instance of the lemma is simplified then passed to f *)
+ let main_tac H := protect_fv "field" in H; f H in
+ (* generate and use equations for each expression *)
+ ReflexiveRewriteTactic mkFFV mkFE lemma_tac main_tac fv0 rl;
+ try simpl_PCond FLD.
+
+Ltac Field_simplify_gen f FLD lH rl :=
+ get_FldPre FLD ();
+ Field_norm_gen f ring_subst_niter FLD lH rl;
+ get_FldPost FLD ().
+
+Ltac Field_simplify :=
+ Field_simplify_gen ltac:(fun H => rewrite H).
+
+Tactic Notation (at level 0) "field_simplify" constr_list(rl) :=
+ let G := Get_goal in
+ field_lookup (PackField Field_simplify) [] rl G.
+
+Tactic Notation (at level 0)
+ "field_simplify" "[" constr_list(lH) "]" constr_list(rl) :=
+ let G := Get_goal in
+ field_lookup (PackField Field_simplify) [lH] rl G.
+
+Tactic Notation "field_simplify" constr_list(rl) "in" hyp(H):=
+ let G := Get_goal in
+ let t := type of H in
+ let g := fresh "goal" in
+ set (g:= G);
+ revert H;
+ field_lookup (PackField Field_simplify) [] rl t;
+ intro H;
+ unfold g;clear g.
+
+Tactic Notation "field_simplify"
+ "["constr_list(lH) "]" constr_list(rl) "in" hyp(H):=
+ let G := Get_goal in
+ let t := type of H in
+ let g := fresh "goal" in
+ set (g:= G);
+ revert H;
+ field_lookup (PackField Field_simplify) [lH] rl t;
+ intro H;
+ unfold g;clear g.
+
+(*
+Ltac Field_simplify_in hyp:=
+ Field_simplify_gen ltac:(fun H => rewrite H in hyp).
+
+Tactic Notation (at level 0)
+ "field_simplify" constr_list(rl) "in" hyp(h) :=
+ let t := type of h in
+ field_lookup (Field_simplify_in h) [] rl t.
+
+Tactic Notation (at level 0)
+ "field_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h) :=
+ let t := type of h in
+ field_lookup (Field_simplify_in h) [lH] rl t.
+*)
+
+(** Generic tactic for solving equations *)
+
+Ltac Field_Scheme Simpl_tac n lemma FLD lH :=
+ let req := get_FldEq FLD in
+ let mkFV := get_RingFV FLD in
+ let mkFFV := get_FFV FLD in
+ let mkFE := get_Meta FLD in
+ let Main_eq t1 t2 :=
+ let fv := FV_hypo_tac mkFV req lH in
+ let fv := mkFFV t1 fv in
+ let fv := mkFFV t2 fv in
+ let lpe := get_Hyp_tac FLD fv lH in
+ let prh := proofHyp_tac lH in
+ let vlpe := fresh "list_hyp" in
+ let fe1 := mkFE t1 fv in
+ let fe2 := mkFE t2 fv in
+ pose (vlpe := lpe);
+ let nlemma := fresh "field_lemma" in
+ (assert (nlemma := lemma n fv vlpe fe1 fe2 prh)
+ || fail "field anomaly:failed to build lemma");
+ ProveLemmaHyps nlemma
+ ltac:(fun ilemma =>
+ apply ilemma
+ || fail "field anomaly: failed in applying lemma";
+ [ Simpl_tac | simpl_PCond FLD]);
+ clear nlemma;
+ subst vlpe in
+ OnEquation req Main_eq.
+
+(* solve completely a field equation, leaving non-zero conditions to be
+ proved (field) *)
+
+Ltac FIELD FLD lH rl :=
+ let Simpl := vm_compute; reflexivity || fail "not a valid field equation" in
+ let lemma := get_L1 FLD in
+ get_FldPre FLD ();
+ Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH;
+ try exact I;
+ get_FldPost FLD().
+
+Tactic Notation (at level 0) "field" :=
+ let G := Get_goal in
+ field_lookup (PackField FIELD) [] G.
+
+Tactic Notation (at level 0) "field" "[" constr_list(lH) "]" :=
+ let G := Get_goal in
+ field_lookup (PackField FIELD) [lH] G.
+
+(* transforms a field equation to an equivalent (simplified) ring equation,
+ and leaves non-zero conditions to be proved (field_simplify_eq) *)
+Ltac FIELD_SIMPL FLD lH rl :=
+ let Simpl := (protect_fv "field") in
+ let lemma := get_SimplifyEqLemma FLD in
+ get_FldPre FLD ();
+ Field_Scheme Simpl Ring_tac.ring_subst_niter lemma FLD lH;
+ get_FldPost FLD ().
+
+Tactic Notation (at level 0) "field_simplify_eq" :=
+ let G := Get_goal in
+ field_lookup (PackField FIELD_SIMPL) [] G.
+
+Tactic Notation (at level 0) "field_simplify_eq" "[" constr_list(lH) "]" :=
+ let G := Get_goal in
+ field_lookup FIELD_SIMPL [lH] G.
+
+(* Same as FIELD_SIMPL but in hypothesis *)
+
+Ltac Field_simplify_eq n FLD lH :=
+ let req := get_FldEq FLD in
+ let mkFV := get_RingFV FLD in
+ let mkFFV := get_FFV FLD in
+ let mkFE := get_Meta FLD in
+ let lemma := get_L4 FLD in
+ let hyp := fresh "hyp" in
+ intro hyp;
+ OnEquationHyp req hyp ltac:(fun t1 t2 =>
+ let fv := FV_hypo_tac mkFV req lH in
+ let fv := mkFFV t1 fv in
+ let fv := mkFFV t2 fv in
+ let lpe := get_Hyp_tac FLD fv lH in
+ let prh := proofHyp_tac lH in
+ let fe1 := mkFE t1 fv in
+ let fe2 := mkFE t2 fv in
+ let vlpe := fresh "vlpe" in
+ ProveLemmaHyps (lemma n fv lpe fe1 fe2 prh)
+ ltac:(fun ilemma =>
+ match type of ilemma with
+ | req _ _ -> _ -> ?EQ =>
+ let tmp := fresh "tmp" in
+ assert (tmp : EQ);
+ [ apply ilemma; [ exact hyp | simpl_PCond_BEURK FLD]
+ | protect_fv "field" in tmp; revert tmp ];
+ clear hyp
+ end)).
+
+Ltac FIELD_SIMPL_EQ FLD lH rl :=
+ get_FldPre FLD ();
+ Field_simplify_eq Ring_tac.ring_subst_niter FLD lH;
+ get_FldPost().
+
+Tactic Notation (at level 0) "field_simplify_eq" "in" hyp(H) :=
+ let t := type of H in
+ generalize H;
+ field_lookup (PackField FIELD_SIMPL_EQ) [] t;
+ [ try exact I
+ | clear H;intro H].
+
+
+Tactic Notation (at level 0)
+ "field_simplify_eq" "[" constr_list(lH) "]" "in" hyp(H) :=
+ let t := type of H in
+ generalize H;
+ field_lookup (PackField FIELD_SIMPL_EQ) [lH] t;
+ [ try exact I
+ |clear H;intro H].
+
+(* More generic tactics to build variants of field *)
+
+(* This tactic reifies c and pass to F:
+ - the FLD structure gathering all info in the field DB
+ - the atom list
+ - the expression (FExpr)
+ *)
+Ltac gen_with_field F c :=
+ let MetaExpr FLD _ rl :=
+ let R := get_FldCarrier FLD in
+ let mkFFV := get_FFV FLD in
+ let mkFE := get_Meta FLD in
+ let csr :=
+ match rl with
+ | List.cons ?r _ => r
+ | _ => fail 1 "anomaly: ill-formed list"
+ end in
+ let fv := mkFFV csr (@List.nil R) in
+ let expr := mkFE csr fv in
+ F FLD fv expr in
+ field_lookup (PackField MetaExpr) [] (c=c).
+
+
+(* pushes the equation expr = ope(expr) in the goal, and
+ discharge it with field *)
+Ltac prove_field_eqn ope FLD fv expr :=
+ let res := ope expr in
+ let expr' := fresh "input_expr" in
+ pose (expr' := expr);
+ let res' := fresh "result" in
+ pose (res' := res);
+ let lemma := get_L1 FLD in
+ let lemma :=
+ constr:(lemma O fv List.nil expr' res' I List.nil (refl_equal _)) in
+ let ty := type of lemma in
+ let lhs := match ty with
+ forall _, ?lhs=_ -> _ => lhs
+ end in
+ let rhs := match ty with
+ forall _, _=_ -> forall _, ?rhs=_ -> _ => rhs
+ end in
+ let lhs' := fresh "lhs" in let lhs_eq := fresh "lhs_eq" in
+ let rhs' := fresh "rhs" in let rhs_eq := fresh "rhs_eq" in
+ compute_assertion lhs_eq lhs' lhs;
+ compute_assertion rhs_eq rhs' rhs;
+ let H := fresh "fld_eqn" in
+ refine (_ (lemma lhs' lhs_eq rhs' rhs_eq _ _));
+ (* main goal *)
+ [intro H;protect_fv "field" in H; revert H
+ (* ring-nf(lhs') = ring-nf(rhs') *)
+ | vm_compute; reflexivity || fail "field cannot prove this equality"
+ (* denominator condition *)
+ | simpl_PCond FLD];
+ clear lhs_eq rhs_eq; subst lhs' rhs'.
+
+Ltac prove_with_field ope c :=
+ gen_with_field ltac:(prove_field_eqn ope) c.
+
+(* Prove an equation x=ope(x) and rewrite with it *)
+Ltac prove_rw ope x :=
+ prove_with_field ope x;
+ [ let H := fresh "Heq_maple" in
+ intro H; rewrite H; clear H
+ |..].
+
+(* Apply ope (FExpr->FExpr) on an expression *)
+Ltac reduce_field_expr ope kont FLD fv expr :=
+ let evfun := get_FEeval FLD in
+ let res := ope expr in
+ let c := (eval simpl_field_expr in (evfun fv res)) in
+ kont c.
+
+(* Hack to let a Ltac return a term in the context of a primitive tactic *)
+Ltac return_term x := generalize (refl_equal x).
+
+(* Turn an operation on field expressions (FExpr) into a reduction
+ on terms (in the field carrier). Because of field_lookup,
+ the tactic cannot return a term directly, so it is returned
+ via the conclusion of the goal (return_term). *)
+Ltac reduce_field_ope ope c :=
+ gen_with_field ltac:(reduce_field_expr ope return_term) c.
+
+
+(* Adding a new field *)
+
+Ltac ring_of_field f :=
+ match type of f with
+ | almost_field_theory _ _ _ _ _ _ _ _ _ => constr:(AF_AR f)
+ | field_theory _ _ _ _ _ _ _ _ _ => constr:(F_R f)
+ | semi_field_theory _ _ _ _ _ _ _ => constr:(SF_SR f)
+ end.
+
+Ltac coerce_to_almost_field set ext f :=
+ match type of f with
+ | almost_field_theory _ _ _ _ _ _ _ _ _ => f
+ | field_theory _ _ _ _ _ _ _ _ _ => constr:(F2AF set ext f)
+ | semi_field_theory _ _ _ _ _ _ _ => constr:(SF2AF set f)
+ end.
+
+Ltac field_elements set ext fspec pspec sspec dspec rk :=
+ let afth := coerce_to_almost_field set ext fspec in
+ let rspec := ring_of_field fspec in
+ ring_elements set ext rspec pspec sspec dspec rk
+ ltac:(fun arth ext_r morph p_spec s_spec d_spec f => f afth ext_r morph p_spec s_spec d_spec).
+
+Ltac field_lemmas set ext inv_m fspec pspec sspec dspec rk :=
+ let get_lemma :=
+ match pspec with None => fun x y => x | _ => fun x y => y end in
+ let simpl_eq_lemma := get_lemma
+ Field_simplify_eq_correct Field_simplify_eq_pow_correct in
+ let simpl_eq_in_lemma := get_lemma
+ Field_simplify_eq_in_correct Field_simplify_eq_pow_in_correct in
+ let rw_lemma := get_lemma
+ Field_rw_correct Field_rw_pow_correct in
+ field_elements set ext fspec pspec sspec dspec rk
+ ltac:(fun afth ext_r morph p_spec s_spec d_spec =>
+ match morph with
+ | _ =>
+ let field_ok1 := constr:(Field_correct set ext_r inv_m afth morph) in
+ match p_spec with
+ | mkhypo ?pp_spec =>
+ let field_ok2 := constr:(field_ok1 _ _ _ pp_spec) in
+ match s_spec with
+ | mkhypo ?ss_spec =>
+ let field_ok3 := constr:(field_ok2 _ ss_spec) in
+ match d_spec with
+ | mkhypo ?dd_spec =>
+ let field_ok := constr:(field_ok3 _ dd_spec) in
+ let mk_lemma lemma :=
+ constr:(lemma _ _ _ _ _ _ _ _ _ _
+ set ext_r inv_m afth
+ _ _ _ _ _ _ _ _ _ morph
+ _ _ _ pp_spec _ ss_spec _ dd_spec) in
+ let field_simpl_eq_ok := mk_lemma simpl_eq_lemma in
+ let field_simpl_ok := mk_lemma rw_lemma in
+ let field_simpl_eq_in := mk_lemma simpl_eq_in_lemma in
+ let cond1_ok :=
+ constr:(Pcond_simpl_gen set ext_r afth morph pp_spec dd_spec) in
+ let cond2_ok :=
+ constr:(Pcond_simpl_complete set ext_r afth morph pp_spec dd_spec) in
+ (fun f =>
+ f afth ext_r morph field_ok field_simpl_ok field_simpl_eq_ok field_simpl_eq_in
+ cond1_ok cond2_ok)
+ | _ => fail 4 "field: bad coefficiant division specification"
+ end
+ | _ => fail 3 "field: bad sign specification"
+ end
+ | _ => fail 2 "field: bad power specification"
+ end
+ | _ => fail 1 "field internal error : field_lemmas, please report"
+ end).