diff options
Diffstat (limited to 'plugins/rtauto')
-rw-r--r-- | plugins/rtauto/Bintree.v | 8 | ||||
-rw-r--r-- | plugins/rtauto/Rtauto.v | 2 |
2 files changed, 5 insertions, 5 deletions
diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v index d68fb1656..769869584 100644 --- a/plugins/rtauto/Bintree.v +++ b/plugins/rtauto/Bintree.v @@ -87,7 +87,7 @@ end. Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n. induction m;simpl;intro n;destruct n;congruence || -(intro e;apply f_equal with positive;auto). +(intro e;apply f_equal;auto). Defined. Theorem refl_pos_eq : forall m, pos_eq m m = true. @@ -140,7 +140,7 @@ end. Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n. induction m;simpl;intro n;destruct n;congruence || -(intro e;apply f_equal with nat;auto). +(intro e;apply f_equal;auto). Defined. Theorem refl_nat_eq : forall n, nat_eq n n = true. @@ -161,14 +161,14 @@ List.map f (l ++ m) = List.map f l ++ List.map f m. induction l. reflexivity. simpl. -intro m ; apply f_equal with (list B);apply IHl. +intro m ; apply f_equal;apply IHl. Qed. Lemma length_map : forall (A B:Set) (f:A -> B) l, length (List.map f l) = length l. induction l. reflexivity. -simpl; apply f_equal with nat;apply IHl. +simpl; apply f_equal;apply IHl. Qed. Lemma Lget_map : forall (A B:Set) (f:A -> B) i l, diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v index 63e6717a0..e80542831 100644 --- a/plugins/rtauto/Rtauto.v +++ b/plugins/rtauto/Rtauto.v @@ -41,7 +41,7 @@ end. Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n. induction m;simpl;destruct n;congruence || -(intro e;apply f_equal with positive;auto). +(intro e;apply f_equal;auto). Qed. Fixpoint form_eq (p q:form) {struct p} :bool := |