aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/ring/LegacyArithRing.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ring/LegacyArithRing.v')
-rw-r--r--plugins/ring/LegacyArithRing.v88
1 files changed, 0 insertions, 88 deletions
diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v
deleted file mode 100644
index 9c059cea1..000000000
--- a/plugins/ring/LegacyArithRing.v
+++ /dev/null
@@ -1,88 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* Instantiation of the Ring tactic for the naturals of Arith $*)
-
-Require Import Bool.
-Require Export LegacyRing.
-Require Export Arith.
-Require Import Eqdep_dec.
-
-Local Open Scope nat_scope.
-
-Fixpoint nateq (n m:nat) {struct m} : bool :=
- match n, m with
- | O, O => true
- | S n', S m' => nateq n' m'
- | _, _ => false
- end.
-
-Lemma nateq_prop : forall n m:nat, Is_true (nateq n m) -> n = m.
-Proof.
- simple induction n; simple induction m; intros; try contradiction.
- trivial.
- unfold Is_true in H1.
- rewrite (H n1 H1).
- trivial.
-Qed.
-
-Hint Resolve nateq_prop: arithring.
-
-Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq.
- split; intros; auto with arith arithring.
-(* apply (fun n m p:nat => plus_reg_l m p n) with (n := n).
- trivial.*)
-Defined.
-
-
-Add Legacy Semi Ring nat plus mult 1 0 nateq NatTheory [ 0 S ].
-
-Goal forall n:nat, S n = 1 + n.
-intro; reflexivity.
-Save S_to_plus_one.
-
-(* Replace all occurrences of (S exp) by (plus (S O) exp), except when
- exp is already O and only for those occurrences than can be reached by going
- down plus and mult operations *)
-Ltac rewrite_S_to_plus_term t :=
- match constr:t with
- | 1 => constr:1
- | (S ?X1) =>
- let t1 := rewrite_S_to_plus_term X1 in
- constr:(1 + t1)
- | (?X1 + ?X2) =>
- let t1 := rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- constr:(t1 + t2)
- | (?X1 * ?X2) =>
- let t1 := rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- constr:(t1 * t2)
- | _ => constr:t
- end.
-
-(* Apply S_to_plus on both sides of an equality *)
-Ltac rewrite_S_to_plus :=
- match goal with
- | |- (?X1 = ?X2) =>
- try
- let t1 :=
- (**) (**)
- rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2)
- | |- (?X1 = ?X2) =>
- try
- let t1 :=
- (**) (**)
- rewrite_S_to_plus_term X1
- with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2)
- end.
-
-Ltac ring_nat := rewrite_S_to_plus; ring.