diff options
Diffstat (limited to 'plugins/ring/LegacyArithRing.v')
-rw-r--r-- | plugins/ring/LegacyArithRing.v | 88 |
1 files changed, 0 insertions, 88 deletions
diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v deleted file mode 100644 index 9c059cea1..000000000 --- a/plugins/ring/LegacyArithRing.v +++ /dev/null @@ -1,88 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(* Instantiation of the Ring tactic for the naturals of Arith $*) - -Require Import Bool. -Require Export LegacyRing. -Require Export Arith. -Require Import Eqdep_dec. - -Local Open Scope nat_scope. - -Fixpoint nateq (n m:nat) {struct m} : bool := - match n, m with - | O, O => true - | S n', S m' => nateq n' m' - | _, _ => false - end. - -Lemma nateq_prop : forall n m:nat, Is_true (nateq n m) -> n = m. -Proof. - simple induction n; simple induction m; intros; try contradiction. - trivial. - unfold Is_true in H1. - rewrite (H n1 H1). - trivial. -Qed. - -Hint Resolve nateq_prop: arithring. - -Definition NatTheory : Semi_Ring_Theory plus mult 1 0 nateq. - split; intros; auto with arith arithring. -(* apply (fun n m p:nat => plus_reg_l m p n) with (n := n). - trivial.*) -Defined. - - -Add Legacy Semi Ring nat plus mult 1 0 nateq NatTheory [ 0 S ]. - -Goal forall n:nat, S n = 1 + n. -intro; reflexivity. -Save S_to_plus_one. - -(* Replace all occurrences of (S exp) by (plus (S O) exp), except when - exp is already O and only for those occurrences than can be reached by going - down plus and mult operations *) -Ltac rewrite_S_to_plus_term t := - match constr:t with - | 1 => constr:1 - | (S ?X1) => - let t1 := rewrite_S_to_plus_term X1 in - constr:(1 + t1) - | (?X1 + ?X2) => - let t1 := rewrite_S_to_plus_term X1 - with t2 := rewrite_S_to_plus_term X2 in - constr:(t1 + t2) - | (?X1 * ?X2) => - let t1 := rewrite_S_to_plus_term X1 - with t2 := rewrite_S_to_plus_term X2 in - constr:(t1 * t2) - | _ => constr:t - end. - -(* Apply S_to_plus on both sides of an equality *) -Ltac rewrite_S_to_plus := - match goal with - | |- (?X1 = ?X2) => - try - let t1 := - (**) (**) - rewrite_S_to_plus_term X1 - with t2 := rewrite_S_to_plus_term X2 in - change (t1 = t2) - | |- (?X1 = ?X2) => - try - let t1 := - (**) (**) - rewrite_S_to_plus_term X1 - with t2 := rewrite_S_to_plus_term X2 in - change (t1 = t2) - end. - -Ltac ring_nat := rewrite_S_to_plus; ring. |