aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/omega/coq_omega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/omega/coq_omega.ml')
-rw-r--r--plugins/omega/coq_omega.ml622
1 files changed, 311 insertions, 311 deletions
diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml
index 075188f54..e037ee8bf 100644
--- a/plugins/omega/coq_omega.ml
+++ b/plugins/omega/coq_omega.ml
@@ -58,7 +58,7 @@ let write f x = f:=x
open Goptions
let _ =
- declare_bool_option
+ declare_bool_option
{ optsync = false;
optname = "Omega system time displaying flag";
optkey = ["Omega";"System"];
@@ -66,7 +66,7 @@ let _ =
optwrite = write display_system_flag }
let _ =
- declare_bool_option
+ declare_bool_option
{ optsync = false;
optname = "Omega action display flag";
optkey = ["Omega";"Action"];
@@ -74,7 +74,7 @@ let _ =
optwrite = write display_action_flag }
let _ =
- declare_bool_option
+ declare_bool_option
{ optsync = false;
optname = "Omega old style flag";
optkey = ["Omega";"OldStyle"];
@@ -89,16 +89,16 @@ let elim_time = timing "Elim "
let simpl_time = timing "Simpl "
let generalize_time = timing "Generalize"
-let new_identifier =
- let cpt = ref 0 in
+let new_identifier =
+ let cpt = ref 0 in
(fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s)
-let new_identifier_state =
- let cpt = ref 0 in
+let new_identifier_state =
+ let cpt = ref 0 in
(fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s)
-let new_identifier_var =
- let cpt = ref 0 in
+let new_identifier_var =
+ let cpt = ref 0 in
(fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
let new_id =
@@ -115,17 +115,17 @@ let display_var i = Printf.sprintf "X%d" i
let intern_id,unintern_id =
let cpt = ref 0 in
let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in
- (fun (name : identifier) ->
- try Hashtbl.find table name with Not_found ->
+ (fun (name : identifier) ->
+ try Hashtbl.find table name with Not_found ->
let idx = !cpt in
- Hashtbl.add table name idx;
+ Hashtbl.add table name idx;
Hashtbl.add co_table idx name;
incr cpt; idx),
- (fun idx ->
- try Hashtbl.find co_table idx with Not_found ->
+ (fun idx ->
+ try Hashtbl.find co_table idx with Not_found ->
let v = new_var () in
Hashtbl.add table v idx; Hashtbl.add co_table idx v; v)
-
+
let mk_then = tclTHENLIST
let exists_tac c = constructor_tac false (Some 1) 1 (Rawterm.ImplicitBindings [c])
@@ -134,10 +134,10 @@ let generalize_tac t = generalize_time (generalize t)
let elim t = elim_time (simplest_elim t)
let exact t = exact_time (Tactics.refine t)
let unfold s = Tactics.unfold_in_concl [all_occurrences, Lazy.force s]
-
+
let rev_assoc k =
let rec loop = function
- | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
+ | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
in
loop
@@ -347,15 +347,15 @@ let mk_eq_rel t1 t2 = mkApp (build_coq_eq (),
let mk_inj t = mkApp (Lazy.force coq_Z_of_nat, [| t |])
let mk_integer n =
- let rec loop n =
- if n =? one then Lazy.force coq_xH else
+ let rec loop n =
+ if n =? one then Lazy.force coq_xH else
mkApp((if n mod two =? zero then Lazy.force coq_xO else Lazy.force coq_xI),
[| loop (n/two) |])
in
- if n =? zero then Lazy.force coq_Z0
+ if n =? zero then Lazy.force coq_Z0
else mkApp ((if n >? zero then Lazy.force coq_Zpos else Lazy.force coq_Zneg),
[| loop (abs n) |])
-
+
type omega_constant =
| Zplus | Zmult | Zminus | Zsucc | Zopp
| Plus | Mult | Minus | Pred | S | O
@@ -371,7 +371,7 @@ type omega_proposition =
| Keq of constr * constr * constr
| Kn
-type result =
+type result =
| Kvar of identifier
| Kapp of omega_constant * constr list
| Kimp of constr * constr
@@ -442,18 +442,18 @@ let recognize_number t =
| f, [t] when f = Lazy.force coq_xI -> one + two * loop t
| f, [t] when f = Lazy.force coq_xO -> two * loop t
| f, [] when f = Lazy.force coq_xH -> one
- | _ -> failwith "not a number"
+ | _ -> failwith "not a number"
in
- match decompose_app t with
+ match decompose_app t with
| f, [t] when f = Lazy.force coq_Zpos -> loop t
| f, [t] when f = Lazy.force coq_Zneg -> neg (loop t)
| f, [] when f = Lazy.force coq_Z0 -> zero
| _ -> failwith "not a number"
-
+
type constr_path =
| P_APP of int
(* Abstraction and product *)
- | P_BODY
+ | P_BODY
| P_TYPE
(* Case *)
| P_BRANCH of int
@@ -461,8 +461,8 @@ type constr_path =
| P_ARG
let context operation path (t : constr) =
- let rec loop i p0 t =
- match (p0,kind_of_term t) with
+ let rec loop i p0 t =
+ match (p0,kind_of_term t) with
| (p, Cast (c,k,t)) -> mkCast (loop i p c,k,t)
| ([], _) -> operation i t
| ((P_APP n :: p), App (f,v)) ->
@@ -493,9 +493,9 @@ let context operation path (t : constr) =
(mkLambda (n,loop i p t,c))
| ((P_TYPE :: p), LetIn (n,b,t,c)) ->
(mkLetIn (n,b,loop i p t,c))
- | (p, _) ->
+ | (p, _) ->
ppnl (Printer.pr_lconstr t);
- failwith ("abstract_path " ^ string_of_int(List.length p))
+ failwith ("abstract_path " ^ string_of_int(List.length p))
in
loop 1 path t
@@ -514,9 +514,9 @@ let occurence path (t : constr) =
| ((P_TYPE :: p), Prod (n,term,c)) -> loop p term
| ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term
| ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term
- | (p, _) ->
+ | (p, _) ->
ppnl (Printer.pr_lconstr t);
- failwith ("occurence " ^ string_of_int(List.length p))
+ failwith ("occurence " ^ string_of_int(List.length p))
in
loop path t
@@ -539,13 +539,13 @@ type oformula =
| Oz of bigint
| Oufo of constr
-let rec oprint = function
- | Oplus(t1,t2) ->
- print_string "("; oprint t1; print_string "+";
+let rec oprint = function
+ | Oplus(t1,t2) ->
+ print_string "("; oprint t1; print_string "+";
oprint t2; print_string ")"
| Oinv t -> print_string "~"; oprint t
- | Otimes (t1,t2) ->
- print_string "("; oprint t1; print_string "*";
+ | Otimes (t1,t2) ->
+ print_string "("; oprint t1; print_string "*";
oprint t2; print_string ")"
| Oatom s -> print_string (string_of_id s)
| Oz i -> print_string (string_of_bigint i)
@@ -567,92 +567,92 @@ let rec val_of = function
| Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |])
| Oufo c -> c
-let compile name kind =
+let compile name kind =
let rec loop accu = function
| Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
| Oz n ->
let id = new_id () in
tag_hypothesis name id;
{kind = kind; body = List.rev accu; constant = n; id = id}
- | _ -> anomaly "compile_equation"
+ | _ -> anomaly "compile_equation"
in
loop []
-let rec decompile af =
+let rec decompile af =
let rec loop = function
- | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
- | [] -> Oz af.constant
+ | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
+ | [] -> Oz af.constant
in
loop af.body
let mkNewMeta () = mkMeta (Evarutil.new_meta())
-let clever_rewrite_base_poly typ p result theorem gl =
+let clever_rewrite_base_poly typ p result theorem gl =
let full = pf_concl gl in
let (abstracted,occ) = abstract_path typ (List.rev p) full in
- let t =
+ let t =
applist
(mkLambda
- (Name (id_of_string "P"),
+ (Name (id_of_string "P"),
mkArrow typ mkProp,
mkLambda
(Name (id_of_string "H"),
applist (mkRel 1,[result]),
- mkApp (Lazy.force coq_eq_ind_r,
+ mkApp (Lazy.force coq_eq_ind_r,
[| typ; result; mkRel 2; mkRel 1; occ; theorem |]))),
- [abstracted])
+ [abstracted])
in
exact (applist(t,[mkNewMeta()])) gl
-let clever_rewrite_base p result theorem gl =
+let clever_rewrite_base p result theorem gl =
clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl
-let clever_rewrite_base_nat p result theorem gl =
+let clever_rewrite_base_nat p result theorem gl =
clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl
-let clever_rewrite_gen p result (t,args) =
- let theorem = applist(t, args) in
+let clever_rewrite_gen p result (t,args) =
+ let theorem = applist(t, args) in
clever_rewrite_base p result theorem
-let clever_rewrite_gen_nat p result (t,args) =
- let theorem = applist(t, args) in
+let clever_rewrite_gen_nat p result (t,args) =
+ let theorem = applist(t, args) in
clever_rewrite_base_nat p result theorem
-let clever_rewrite p vpath t gl =
+let clever_rewrite p vpath t gl =
let full = pf_concl gl in
let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in
let vargs = List.map (fun p -> occurence p occ) vpath in
let t' = applist(t, (vargs @ [abstracted])) in
exact (applist(t',[mkNewMeta()])) gl
-let rec shuffle p (t1,t2) =
+let rec shuffle p (t1,t2) =
match t1,t2 with
| Oplus(l1,r1), Oplus(l2,r2) ->
- if weight l1 > weight l2 then
+ if weight l1 > weight l2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
- (clever_rewrite p [[P_APP 1;P_APP 1];
+ (clever_rewrite p [[P_APP 1;P_APP 1];
[P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
:: tac,
Oplus(l1,t'))
- else
+ else
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
(clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_permute)
:: tac,
Oplus(l2,t'))
- | Oplus(l1,r1), t2 ->
+ | Oplus(l1,r1), t2 ->
if weight l1 > weight t2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
- :: tac,
+ :: tac,
Oplus(l1, t')
- else
- [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ else
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
- | t1,Oplus(l2,r2) ->
+ | t1,Oplus(l2,r2) ->
if weight l2 > weight t1 then
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
@@ -664,11 +664,11 @@ let rec shuffle p (t1,t2) =
[focused_simpl p], Oz(Bigint.add t1 t2)
| t1,t2 ->
if weight t1 < weight t2 then
- [clever_rewrite p [[P_APP 1];[P_APP 2]]
+ [clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
else [],Oplus(t1,t2)
-
+
let rec shuffle_mult p_init k1 e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
@@ -681,13 +681,13 @@ let rec shuffle_mult p_init k1 e1 k2 e2 =
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
- (Lazy.force coq_fast_OMEGA10)
+ (Lazy.force coq_fast_OMEGA10)
in
- if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
- let tac' =
+ if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
+ let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
- tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
@@ -706,7 +706,7 @@ let rec shuffle_mult p_init k1 e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
- | ({c=c1;v=v1}::l1), [] ->
+ | ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
@@ -714,7 +714,7 @@ let rec shuffle_mult p_init k1 e1 k2 e2 =
[P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) ::
loop (P_APP 2 :: p) (l1,[])
- | [],({c=c2;v=v2}::l2) ->
+ | [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
@@ -722,10 +722,10 @@ let rec shuffle_mult p_init k1 e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
- | [],[] -> [focused_simpl p_init]
+ | [],[] -> [focused_simpl p_init]
in
loop p_init (e1,e2)
-
+
let rec shuffle_mult_right p_init e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
@@ -738,14 +738,14 @@ let rec shuffle_mult_right p_init e1 k2 e2 =
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
- (Lazy.force coq_fast_OMEGA15)
+ (Lazy.force coq_fast_OMEGA15)
in
- if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
- let tac' =
+ if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
+ let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
- (Lazy.force coq_fast_Zred_factor5)
+ (Lazy.force coq_fast_Zred_factor5)
in
- tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
+ tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
@@ -760,11 +760,11 @@ let rec shuffle_mult_right p_init e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
- | ({c=c1;v=v1}::l1), [] ->
+ | ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) (l1,[])
- | [],({c=c2;v=v2}::l2) ->
+ | [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
@@ -772,89 +772,89 @@ let rec shuffle_mult_right p_init e1 k2 e2 =
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
- | [],[] -> [focused_simpl p_init]
+ | [],[] -> [focused_simpl p_init]
in
loop p_init (e1,e2)
-let rec shuffle_cancel p = function
+let rec shuffle_cancel p = function
| [] -> [focused_simpl p]
| ({c=c1}::l1) ->
- let tac =
+ let tac =
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
- [P_APP 2; P_APP 2];
+ [P_APP 2; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
- (if c1 >? zero then
- (Lazy.force coq_fast_OMEGA13)
- else
- (Lazy.force coq_fast_OMEGA14))
+ (if c1 >? zero then
+ (Lazy.force coq_fast_OMEGA13)
+ else
+ (Lazy.force coq_fast_OMEGA14))
in
tac :: shuffle_cancel p l1
-
+
let rec scalar p n = function
- | Oplus(t1,t2) ->
- let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
+ | Oplus(t1,t2) ->
+ let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
tac2,t2' = scalar (P_APP 2 :: p) n t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
- (Lazy.force coq_fast_Zmult_plus_distr_l) ::
+ (Lazy.force coq_fast_Zmult_plus_distr_l) ::
(tac1 @ tac2), Oplus(t1',t2')
| Oinv t ->
- [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_opp_comm);
focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(neg n))
- | Otimes(t1,Oz x) ->
+ | Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zmult_assoc_reverse);
- focused_simpl (P_APP 2 :: p)],
+ focused_simpl (P_APP 2 :: p)],
Otimes(t1,Oz (n*x))
| Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
| (Oatom _ as t) -> [], Otimes(t,Oz n)
| Oz i -> [focused_simpl p],Oz(n*i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |]))
-
-let rec scalar_norm p_init =
+
+let rec scalar_norm p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
- | (_::l) ->
+ | (_::l) ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];[P_APP 2]]
- (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
+ (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
in
loop p_init
let rec norm_add p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
- | _:: l ->
+ | _:: l ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
- loop (P_APP 2 :: p) l
+ loop (P_APP 2 :: p) l
in
loop p_init
let rec scalar_norm_add p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
- | _ :: l ->
+ | _ :: l ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
- (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
+ (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
in
loop p_init
let rec negate p = function
- | Oplus(t1,t2) ->
- let tac1,t1' = negate (P_APP 1 :: p) t1 and
+ | Oplus(t1,t2) ->
+ let tac1,t1' = negate (P_APP 1 :: p) t1 and
tac2,t2' = negate (P_APP 2 :: p) t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
- (Lazy.force coq_fast_Zopp_plus_distr) ::
+ (Lazy.force coq_fast_Zopp_plus_distr) ::
(tac1 @ tac2),
Oplus(t1',t2')
| Oinv t ->
[clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_involutive)], t
- | Otimes(t1,Oz x) ->
+ | Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zopp_mult_distr_r);
focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (neg x))
@@ -864,13 +864,13 @@ let rec negate p = function
[clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1)], r
| Oz i -> [focused_simpl p],Oz(neg i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
-
-let rec transform p t =
+
+let rec transform p t =
let default isnat t' =
- try
+ try
let v,th,_ = find_constr t' in
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
- with _ ->
+ with _ ->
let v = new_identifier_var ()
and th = new_identifier () in
hide_constr t' v th isnat;
@@ -878,12 +878,12 @@ let rec transform p t =
in
try match destructurate_term t with
| Kapp(Zplus,[t1;t2]) ->
- let tac1,t1' = transform (P_APP 1 :: p) t1
+ let tac1,t1' = transform (P_APP 1 :: p) t1
and tac2,t2' = transform (P_APP 2 :: p) t2 in
let tac,t' = shuffle p (t1',t2') in
tac1 @ tac2 @ tac, t'
| Kapp(Zminus,[t1;t2]) ->
- let tac,t =
+ let tac,t =
transform p
(mkApp (Lazy.force coq_Zplus,
[| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in
@@ -893,18 +893,18 @@ let rec transform p t =
[| t1; mk_integer one |])) in
unfold sp_Zsucc :: tac,t
| Kapp(Zmult,[t1;t2]) ->
- let tac1,t1' = transform (P_APP 1 :: p) t1
+ let tac1,t1' = transform (P_APP 1 :: p) t1
and tac2,t2' = transform (P_APP 2 :: p) t2 in
begin match t1',t2' with
| (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
| (Oz n,_) ->
- let sym =
- clever_rewrite p [[P_APP 1];[P_APP 2]]
+ let sym =
+ clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_comm) in
let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
| _ -> default false t
end
- | Kapp((Zpos|Zneg|Z0),_) ->
+ | Kapp((Zpos|Zneg|Z0),_) ->
(try ([],Oz(recognize_number t)) with _ -> default false t)
| Kvar s -> [],Oatom s
| Kapp(Zopp,[t]) ->
@@ -914,28 +914,28 @@ let rec transform p t =
| Kapp(Z_of_nat,[t']) -> default true t'
| _ -> default false t
with e when catchable_exception e -> default false t
-
+
let shrink_pair p f1 f2 =
match f1,f2 with
- | Oatom v,Oatom _ ->
+ | Oatom v,Oatom _ ->
let r = Otimes(Oatom v,Oz two) in
clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
- | Oatom v, Otimes(_,c2) ->
+ | Oatom v, Otimes(_,c2) ->
let r = Otimes(Oatom v,Oplus(c2,Oz one)) in
- clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
+ clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor2), r
- | Otimes (v1,c1),Oatom v ->
+ | Otimes (v1,c1),Oatom v ->
let r = Otimes(Oatom v,Oplus(c1,Oz one)) in
clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zred_factor3), r
| Otimes (Oatom v,c1),Otimes (v2,c2) ->
let r = Otimes(Oatom v,Oplus(c1,c2)) in
- clever_rewrite p
+ clever_rewrite p
[[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor4),r
- | t1,t2 ->
- begin
- oprint t1; print_newline (); oprint t2; print_newline ();
+ | t1,t2 ->
+ begin
+ oprint t1; print_newline (); oprint t2; print_newline ();
flush Pervasives.stdout; error "shrink.1"
end
@@ -948,7 +948,7 @@ let reduce_factor p = function
let rec compute = function
| Oz n -> n
| Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2)
- | _ -> error "condense.1"
+ | _ -> error "condense.1"
in
[focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
| t -> oprint t; error "reduce_factor.1"
@@ -957,31 +957,31 @@ let rec condense p = function
| Oplus(f1,(Oplus(f2,r) as t)) ->
if weight f1 = weight f2 then begin
let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
- let assoc_tac =
- clever_rewrite p
+ let assoc_tac =
+ clever_rewrite p
[[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc) in
let tac_list,t' = condense p (Oplus(t,r)) in
(assoc_tac :: shrink_tac :: tac_list), t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
- let tac',t' = condense (P_APP 2 :: p) t in
- (tac @ tac'), Oplus(f,t')
+ let tac',t' = condense (P_APP 2 :: p) t in
+ (tac @ tac'), Oplus(f,t')
end
- | Oplus(f1,Oz n) ->
+ | Oplus(f1,Oz n) ->
let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
- | Oplus(f1,f2) ->
+ | Oplus(f1,f2) ->
if weight f1 = weight f2 then begin
let tac_shrink,t = shrink_pair p f1 f2 in
let tac,t' = condense p t in
tac_shrink :: tac,t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
- let tac',t' = condense (P_APP 2 :: p) f2 in
- (tac @ tac'),Oplus(f,t')
+ let tac',t' = condense (P_APP 2 :: p) f2 in
+ (tac @ tac'),Oplus(f,t')
end
| Oz _ as t -> [],t
- | t ->
+ | t ->
let tac,t' = reduce_factor p t in
let final = Oplus(t',Oz zero) in
let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
@@ -990,99 +990,99 @@ let rec condense p = function
let rec clear_zero p = function
| Oplus(Otimes(Oatom v,Oz n),r) when n =? zero ->
let tac =
- clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
+ clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
let tac',t = clear_zero p r in
tac :: tac',t
- | Oplus(f,r) ->
+ | Oplus(f,r) ->
let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
| t -> [],t
-let replay_history tactic_normalisation =
+let replay_history tactic_normalisation =
let aux = id_of_string "auxiliary" in
let aux1 = id_of_string "auxiliary_1" in
let aux2 = id_of_string "auxiliary_2" in
let izero = mk_integer zero in
let rec loop t =
match t with
- | HYP e :: l ->
- begin
- try
- tclTHEN
- (List.assoc (hyp_of_tag e.id) tactic_normalisation)
+ | HYP e :: l ->
+ begin
+ try
+ tclTHEN
+ (List.assoc (hyp_of_tag e.id) tactic_normalisation)
(loop l)
with Not_found -> loop l end
| NEGATE_CONTRADICT (e2,e1,b) :: l ->
- let eq1 = decompile e1
- and eq2 = decompile e2 in
- let id1 = hyp_of_tag e1.id
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
+ let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
let k = if b then negone else one in
let p_initial = [P_APP 1;P_TYPE] in
let tac= shuffle_mult_right p_initial e1.body k e2.body in
tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_OMEGA17, [|
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA17, [|
val_of eq1;
val_of eq2;
- mk_integer k;
+ mk_integer k;
mkVar id1; mkVar id2 |])]);
(mk_then tac);
(intros_using [aux]);
(resolve_id aux);
reflexivity
]
- | CONTRADICTION (e1,e2) :: l ->
- let eq1 = decompile e1
- and eq2 = decompile e2 in
+ | CONTRADICTION (e1,e2) :: l ->
+ let eq1 = decompile e1
+ and eq2 = decompile e2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac = shuffle_cancel p_initial e1.body in
let solve_le =
- let not_sup_sup = mkApp (build_coq_eq (), [|
- Lazy.force coq_comparison;
+ let not_sup_sup = mkApp (build_coq_eq (), [|
+ Lazy.force coq_comparison;
Lazy.force coq_Gt;
Lazy.force coq_Gt |])
in
- tclTHENS
+ tclTHENS
(tclTHENLIST [
(unfold sp_Zle);
(simpl_in_concl);
intro;
(absurd not_sup_sup) ])
- [ assumption ; reflexivity ]
+ [ assumption ; reflexivity ]
in
let theorem =
- mkApp (Lazy.force coq_OMEGA2, [|
- val_of eq1; val_of eq2;
+ mkApp (Lazy.force coq_OMEGA2, [|
+ val_of eq1; val_of eq2;
mkVar (hyp_of_tag e1.id);
mkVar (hyp_of_tag e2.id) |])
in
tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le)
| DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
let id = hyp_of_tag e1.id in
- let eq1 = val_of(decompile e1)
+ let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
- let kk = mk_integer k
+ let kk = mk_integer k
and dd = mk_integer d in
let rhs = mk_plus (mk_times eq2 kk) dd in
let state_eg = mk_eq eq1 rhs in
let tac = scalar_norm_add [P_APP 3] e2.body in
- tclTHENS
- (cut state_eg)
+ tclTHENS
+ (cut state_eg)
[ tclTHENS
(tclTHENLIST [
(intros_using [aux]);
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_OMEGA1,
[| eq1; rhs; mkVar aux; mkVar id |])]);
(clear [aux;id]);
(intros_using [id]);
(cut (mk_gt kk dd)) ])
- [ tclTHENS
- (cut (mk_gt kk izero))
+ [ tclTHENS
+ (cut (mk_gt kk izero))
[ tclTHENLIST [
(intros_using [aux1; aux2]);
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_Zmult_le_approx,
[| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]);
(clear [aux1;aux2;id]);
@@ -1095,23 +1095,23 @@ let replay_history tactic_normalisation =
tclTHENLIST [ (unfold sp_Zgt); simpl_in_concl; reflexivity ]
];
tclTHEN (mk_then tac) reflexivity ]
-
+
| NOT_EXACT_DIVIDE (e1,k) :: l ->
let c = floor_div e1.constant k in
let d = Bigint.sub e1.constant (Bigint.mult c k) in
- let e2 = {id=e1.id; kind=EQUA;constant = c;
+ let e2 = {id=e1.id; kind=EQUA;constant = c;
body = map_eq_linear (fun c -> c / k) e1.body } in
let eq2 = val_of(decompile e2) in
- let kk = mk_integer k
+ let kk = mk_integer k
and dd = mk_integer d in
let tac = scalar_norm_add [P_APP 2] e2.body in
- tclTHENS
- (cut (mk_gt dd izero))
- [ tclTHENS (cut (mk_gt kk dd))
+ tclTHENS
+ (cut (mk_gt dd izero))
+ [ tclTHENS (cut (mk_gt kk dd))
[tclTHENLIST [
(intros_using [aux2;aux1]);
- (generalize_tac
- [mkApp (Lazy.force coq_OMEGA4,
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA4,
[| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]);
(clear [aux1;aux2]);
(unfold sp_not);
@@ -1121,7 +1121,7 @@ let replay_history tactic_normalisation =
assumption ] ;
tclTHENLIST [
(unfold sp_Zgt);
- simpl_in_concl;
+ simpl_in_concl;
reflexivity ] ];
tclTHENLIST [
(unfold sp_Zgt);
@@ -1130,18 +1130,18 @@ let replay_history tactic_normalisation =
| EXACT_DIVIDE (e1,k) :: l ->
let id = hyp_of_tag e1.id in
let e2 = map_eq_afine (fun c -> c / k) e1 in
- let eq1 = val_of(decompile e1)
+ let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
let kk = mk_integer k in
let state_eq = mk_eq eq1 (mk_times eq2 kk) in
if e1.kind = DISE then
let tac = scalar_norm [P_APP 3] e2.body in
- tclTHENS
- (cut state_eq)
+ tclTHENS
+ (cut state_eq)
[tclTHENLIST [
(intros_using [aux1]);
- (generalize_tac
- [mkApp (Lazy.force coq_OMEGA18,
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA18,
[| eq1;eq2;kk;mkVar aux1; mkVar id |])]);
(clear [aux1;id]);
(intros_using [id]);
@@ -1149,14 +1149,14 @@ let replay_history tactic_normalisation =
tclTHEN (mk_then tac) reflexivity ]
else
let tac = scalar_norm [P_APP 3] e2.body in
- tclTHENS (cut state_eq)
+ tclTHENS (cut state_eq)
[
- tclTHENS
- (cut (mk_gt kk izero))
+ tclTHENS
+ (cut (mk_gt kk izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
- (generalize_tac
- [mkApp (Lazy.force coq_OMEGA3,
+ (generalize_tac
+ [mkApp (Lazy.force coq_OMEGA3,
[| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]);
(clear [aux1;aux2;id]);
(intros_using [id]);
@@ -1169,35 +1169,35 @@ let replay_history tactic_normalisation =
| (MERGE_EQ(e3,e1,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
- let id1 = hyp_of_tag e1.id
+ let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2 in
- let eq1 = val_of(decompile e1)
+ let eq1 = val_of(decompile e1)
and eq2 = val_of (decompile (negate_eq e1)) in
- let tac =
- clever_rewrite [P_APP 3] [[P_APP 1]]
+ let tac =
+ clever_rewrite [P_APP 3] [[P_APP 1]]
(Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
- scalar_norm [P_APP 3] e1.body
+ scalar_norm [P_APP 3] e1.body
in
- tclTHENS
- (cut (mk_eq eq1 (mk_inv eq2)))
+ tclTHENS
+ (cut (mk_eq eq1 (mk_inv eq2)))
[tclTHENLIST [
(intros_using [aux]);
- (generalize_tac [mkApp (Lazy.force coq_OMEGA8,
+ (generalize_tac [mkApp (Lazy.force coq_OMEGA8,
[| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]);
(clear [id1;id2;aux]);
(intros_using [id]);
(loop l) ];
tclTHEN (mk_then tac) reflexivity]
-
+
| STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l ->
- let id = new_identifier ()
+ let id = new_identifier ()
and id2 = hyp_of_tag orig.id in
tag_hypothesis id e.id;
- let eq1 = val_of(decompile def)
+ let eq1 = val_of(decompile def)
and eq2 = val_of(decompile orig) in
let vid = unintern_id v in
let theorem =
- mkApp (build_coq_ex (), [|
+ mkApp (build_coq_ex (), [|
Lazy.force coq_Z;
mkLambda
(Name vid,
@@ -1206,20 +1206,20 @@ let replay_history tactic_normalisation =
in
let mm = mk_integer m in
let p_initial = [P_APP 2;P_TYPE] in
- let tac =
- clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
+ let tac =
+ clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
[[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
shuffle_mult_right p_initial
orig.body m ({c= negone;v= v}::def.body) in
- tclTHENS
- (cut theorem)
+ tclTHENS
+ (cut theorem)
[tclTHENLIST [
(intros_using [aux]);
(elim_id aux);
(clear [aux]);
(intros_using [vid; aux]);
(generalize_tac
- [mkApp (Lazy.force coq_OMEGA9,
+ [mkApp (Lazy.force coq_OMEGA9,
[| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]);
(mk_then tac);
(clear [aux]);
@@ -1227,36 +1227,36 @@ let replay_history tactic_normalisation =
(loop l) ];
tclTHEN (exists_tac (inj_open eq1)) reflexivity ]
| SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
- let id1 = new_identifier ()
+ let id1 = new_identifier ()
and id2 = new_identifier () in
tag_hypothesis id1 e1; tag_hypothesis id2 e2;
let id = hyp_of_tag e.id in
let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
let eq = val_of(decompile e) in
- tclTHENS
+ tclTHENS
(simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id])))
[tclTHENLIST [ (mk_then tac1); (intros_using [id1]); (loop act1) ];
tclTHENLIST [ (mk_then tac2); (intros_using [id2]); (loop act2) ]]
| SUM(e3,(k1,e1),(k2,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
- let id1 = hyp_of_tag e1.id
+ let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
- let eq1 = val_of(decompile e1)
+ let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
if k1 =? one & e2.kind = EQUA then
let tac_thm =
match e1.kind with
- | EQUA -> Lazy.force coq_OMEGA5
- | INEQ -> Lazy.force coq_OMEGA6
- | DISE -> Lazy.force coq_OMEGA20
+ | EQUA -> Lazy.force coq_OMEGA5
+ | INEQ -> Lazy.force coq_OMEGA6
+ | DISE -> Lazy.force coq_OMEGA20
in
let kk = mk_integer k2 in
let p_initial =
if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
- tclTHENLIST [
+ tclTHENLIST [
(generalize_tac
[mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]);
(mk_then tac);
@@ -1264,18 +1264,18 @@ let replay_history tactic_normalisation =
(loop l)
]
else
- let kk1 = mk_integer k1
+ let kk1 = mk_integer k1
and kk2 = mk_integer k2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
- tclTHENS (cut (mk_gt kk1 izero))
- [tclTHENS
- (cut (mk_gt kk2 izero))
+ tclTHENS (cut (mk_gt kk1 izero))
+ [tclTHENS
+ (cut (mk_gt kk2 izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
- [mkApp (Lazy.force coq_OMEGA7, [|
- eq1;eq2;kk1;kk2;
+ [mkApp (Lazy.force coq_OMEGA7, [|
+ eq1;eq2;kk1;kk2;
mkVar aux1;mkVar aux2;
mkVar id1;mkVar id2 |])]);
(clear [aux1;aux2]);
@@ -1288,11 +1288,11 @@ let replay_history tactic_normalisation =
reflexivity ] ];
tclTHENLIST [
(unfold sp_Zgt);
- simpl_in_concl;
+ simpl_in_concl;
reflexivity ] ]
- | CONSTANT_NOT_NUL(e,k) :: l ->
+ | CONSTANT_NOT_NUL(e,k) :: l ->
tclTHEN (generalize_tac [mkVar (hyp_of_tag e)]) Equality.discrConcl
- | CONSTANT_NUL(e) :: l ->
+ | CONSTANT_NUL(e) :: l ->
tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
| CONSTANT_NEG(e,k) :: l ->
tclTHENLIST [
@@ -1302,43 +1302,43 @@ let replay_history tactic_normalisation =
(unfold sp_not);
(intros_using [aux]);
(resolve_id aux);
- reflexivity
+ reflexivity
]
- | _ -> tclIDTAC
+ | _ -> tclIDTAC
in
loop
let normalize p_initial t =
let (tac,t') = transform p_initial t in
let (tac',t'') = condense p_initial t' in
- let (tac'',t''') = clear_zero p_initial t'' in
+ let (tac'',t''') = clear_zero p_initial t'' in
tac @ tac' @ tac'' , t'''
-
+
let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) =
let p_initial = [P_APP pos ;P_TYPE] in
let (tac,t') = normalize p_initial t in
- let shift_left =
- tclTHEN
+ let shift_left =
+ tclTHEN
(generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ])
(tclTRY (clear [id]))
in
if tac <> [] then
- let id' = new_identifier () in
+ let id' = new_identifier () in
((id',(tclTHENLIST [ (shift_left); (mk_then tac); (intros_using [id']) ]))
:: tactic,
compile id' flag t' :: defs)
- else
+ else
(tactic,defs)
-
+
let destructure_omega gl tac_def (id,c) =
- if atompart_of_id id = "State" then
+ if atompart_of_id id = "State" then
tac_def
else
try match destructurate_prop c with
- | Kapp(Eq,[typ;t1;t2])
+ | Kapp(Eq,[typ;t1;t2])
when destructurate_type (pf_nf gl typ) = Kapp(Z,[]) ->
let t = mk_plus t1 (mk_inv t2) in
- normalize_equation
+ normalize_equation
id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
| Kapp(Zne,[t1;t2]) ->
let t = mk_plus t1 (mk_inv t2) in
@@ -1369,10 +1369,10 @@ let reintroduce id =
let coq_omega gl =
clear_tables ();
- let tactic_normalisation, system =
+ let tactic_normalisation, system =
List.fold_left (destructure_omega gl) ([],[]) (pf_hyps_types gl) in
- let prelude,sys =
- List.fold_left
+ let prelude,sys =
+ List.fold_left
(fun (tac,sys) (t,(v,th,b)) ->
if b then
let id = new_identifier () in
@@ -1385,8 +1385,8 @@ let coq_omega gl =
(clear [id]);
(intros_using [th;id]);
tac ]),
- {kind = INEQ;
- body = [{v=intern_id v; c=one}];
+ {kind = INEQ;
+ body = [{v=intern_id v; c=one}];
constant = zero; id = i} :: sys
else
(tclTHENLIST [
@@ -1399,17 +1399,17 @@ let coq_omega gl =
let system = system @ sys in
if !display_system_flag then display_system display_var system;
if !old_style_flag then begin
- try
+ try
let _ = simplify (new_id,new_var_num,display_var) false system in
tclIDTAC gl
- with UNSOLVABLE ->
+ with UNSOLVABLE ->
let _,path = depend [] [] (history ()) in
if !display_action_flag then display_action display_var path;
- (tclTHEN prelude (replay_history tactic_normalisation path)) gl
- end else begin
+ (tclTHEN prelude (replay_history tactic_normalisation path)) gl
+ end else begin
try
let path = simplify_strong (new_id,new_var_num,display_var) system in
- if !display_action_flag then display_action display_var path;
+ if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path)) gl
with NO_CONTRADICTION -> error "Omega can't solve this system"
end
@@ -1417,10 +1417,10 @@ let coq_omega gl =
let coq_omega = solver_time coq_omega
let nat_inject gl =
- let rec explore p t =
+ let rec explore p t =
try match destructurate_term t with
| Kapp(Plus,[t1;t2]) ->
- tclTHENLIST [
+ tclTHENLIST [
(clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_plus),[t1;t2]));
(explore (P_APP 1 :: p) t1);
@@ -1436,61 +1436,61 @@ let nat_inject gl =
| Kapp(Minus,[t1;t2]) ->
let id = new_identifier () in
tclTHENS
- (tclTHEN
- (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
- (intros_using [id]))
+ (tclTHEN
+ (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
+ (intros_using [id]))
[
tclTHENLIST [
- (clever_rewrite_gen p
+ (clever_rewrite_gen p
(mk_minus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_minus1),[t1;t2;mkVar id]));
(loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]);
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2) ];
- (tclTHEN
+ (tclTHEN
(clever_rewrite_gen p (mk_integer zero)
((Lazy.force coq_inj_minus2),[t1;t2;mkVar id]))
(loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])]))
]
| Kapp(S,[t']) ->
let rec is_number t =
- try match destructurate_term t with
+ try match destructurate_term t with
Kapp(S,[t]) -> is_number t
| Kapp(O,[]) -> true
| _ -> false
- with e when catchable_exception e -> false
+ with e when catchable_exception e -> false
in
let rec loop p t =
- try match destructurate_term t with
+ try match destructurate_term t with
Kapp(S,[t]) ->
- (tclTHEN
- (clever_rewrite_gen p
+ (tclTHEN
+ (clever_rewrite_gen p
(mkApp (Lazy.force coq_Zsucc, [| mk_inj t |]))
- ((Lazy.force coq_inj_S),[t]))
+ ((Lazy.force coq_inj_S),[t]))
(loop (P_APP 1 :: p) t))
- | _ -> explore p t
- with e when catchable_exception e -> explore p t
+ | _ -> explore p t
+ with e when catchable_exception e -> explore p t
in
if is_number t' then focused_simpl p else loop p t
| Kapp(Pred,[t]) ->
- let t_minus_one =
- mkApp (Lazy.force coq_minus, [| t;
+ let t_minus_one =
+ mkApp (Lazy.force coq_minus, [| t;
mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in
tclTHEN
- (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
+ (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
((Lazy.force coq_pred_of_minus),[t]))
- (explore p t_minus_one)
+ (explore p t_minus_one)
| Kapp(O,[]) -> focused_simpl p
- | _ -> tclIDTAC
- with e when catchable_exception e -> tclIDTAC
-
+ | _ -> tclIDTAC
+ with e when catchable_exception e -> tclIDTAC
+
and loop = function
| [] -> tclIDTAC
- | (i,t)::lit ->
- begin try match destructurate_prop t with
+ | (i,t)::lit ->
+ begin try match destructurate_prop t with
Kapp(Le,[t1;t2]) ->
tclTHENLIST [
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
@@ -1499,7 +1499,7 @@ let nat_inject gl =
]
| Kapp(Lt,[t1;t2]) ->
tclTHENLIST [
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
@@ -1508,7 +1508,7 @@ let nat_inject gl =
]
| Kapp(Ge,[t1;t2]) ->
tclTHENLIST [
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
@@ -1536,7 +1536,7 @@ let nat_inject gl =
| Kapp(Eq,[typ;t1;t2]) ->
if pf_conv_x gl typ (Lazy.force coq_nat) then
tclTHENLIST [
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 2; P_TYPE] t1);
(explore [P_APP 3; P_TYPE] t2);
@@ -1545,32 +1545,32 @@ let nat_inject gl =
]
else loop lit
| _ -> loop lit
- with e when catchable_exception e -> loop lit end
+ with e when catchable_exception e -> loop lit end
in
loop (List.rev (pf_hyps_types gl)) gl
-
+
let rec decidability gl t =
match destructurate_prop t with
- | Kapp(Or,[t1;t2]) ->
+ | Kapp(Or,[t1;t2]) ->
mkApp (Lazy.force coq_dec_or, [| t1; t2;
decidability gl t1; decidability gl t2 |])
- | Kapp(And,[t1;t2]) ->
+ | Kapp(And,[t1;t2]) ->
mkApp (Lazy.force coq_dec_and, [| t1; t2;
decidability gl t1; decidability gl t2 |])
- | Kapp(Iff,[t1;t2]) ->
+ | Kapp(Iff,[t1;t2]) ->
mkApp (Lazy.force coq_dec_iff, [| t1; t2;
decidability gl t1; decidability gl t2 |])
- | Kimp(t1,t2) ->
+ | Kimp(t1,t2) ->
mkApp (Lazy.force coq_dec_imp, [| t1; t2;
decidability gl t1; decidability gl t2 |])
- | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1;
+ | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1;
decidability gl t1 |])
- | Kapp(Eq,[typ;t1;t2]) ->
+ | Kapp(Eq,[typ;t1;t2]) ->
begin match destructurate_type (pf_nf gl typ) with
| Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
| Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
- | _ -> errorlabstrm "decidability"
- (str "Omega: Can't solve a goal with equality on " ++
+ | _ -> errorlabstrm "decidability"
+ (str "Omega: Can't solve a goal with equality on " ++
Printer.pr_lconstr typ)
end
| Kapp(Zne,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zne, [| t1;t2 |])
@@ -1584,7 +1584,7 @@ let rec decidability gl t =
| Kapp(Gt, [t1;t2]) -> mkApp (Lazy.force coq_dec_gt, [| t1;t2 |])
| Kapp(False,[]) -> Lazy.force coq_dec_False
| Kapp(True,[]) -> Lazy.force coq_dec_True
- | Kapp(Other t,_::_) -> error
+ | Kapp(Other t,_::_) -> error
("Omega: Unrecognized predicate or connective: "^t)
| Kapp(Other t,[]) -> error ("Omega: Unrecognized atomic proposition: "^t)
| Kvar _ -> error "Omega: Can't solve a goal with proposition variables"
@@ -1595,7 +1595,7 @@ let onClearedName id tac =
(* so renaming may be necessary *)
tclTHEN
(tclTRY (clear [id]))
- (fun gl ->
+ (fun gl ->
let id = fresh_id [] id gl in
tclTHEN (introduction id) (tac id) gl)
@@ -1607,7 +1607,7 @@ let destructure_hyps gl =
| Kapp(False,[]) -> elim_id i
| Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit
| Kapp(Or,[t1;t2]) ->
- (tclTHENS
+ (tclTHENS
(elim_id i)
[ onClearedName i (fun i -> (loop ((i,None,t1)::lit)));
onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ])
@@ -1615,7 +1615,7 @@ let destructure_hyps gl =
tclTHENLIST [
(elim_id i);
(tclTRY (clear [i]));
- (fun gl ->
+ (fun gl ->
let i1 = fresh_id [] (add_suffix i "_left") gl in
let i2 = fresh_id [] (add_suffix i "_right") gl in
tclTHENLIST [
@@ -1627,7 +1627,7 @@ let destructure_hyps gl =
tclTHENLIST [
(elim_id i);
(tclTRY (clear [i]));
- (fun gl ->
+ (fun gl ->
let i1 = fresh_id [] (add_suffix i "_left") gl in
let i2 = fresh_id [] (add_suffix i "_right") gl in
tclTHENLIST [
@@ -1661,16 +1661,16 @@ let destructure_hyps gl =
]
else
loop lit
- | Kapp(Not,[t]) ->
- begin match destructurate_prop t with
- Kapp(Or,[t1;t2]) ->
+ | Kapp(Not,[t]) ->
+ begin match destructurate_prop t with
+ Kapp(Or,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit))))
]
- | Kapp(And,[t1;t2]) ->
+ | Kapp(And,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_and, [| t1; t2;
@@ -1690,8 +1690,8 @@ let destructure_hyps gl =
]
| Kimp(t1,t2) ->
tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_not_imp, [| t1; t2;
+ (generalize_tac
+ [mkApp (Lazy.force coq_not_imp, [| t1; t2;
decidability gl t1;mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_and t1 (mk_not t2)) :: lit))))
@@ -1717,7 +1717,7 @@ let destructure_hyps gl =
]
| Kapp(Zlt, [t1;t2]) ->
tclTHENLIST [
- (generalize_tac
+ (generalize_tac
[mkApp (Lazy.force coq_Znot_lt_ge, [| t1;t2;mkVar i|])]);
(onClearedName i (fun _ -> loop lit))
]
@@ -1752,33 +1752,33 @@ let destructure_hyps gl =
(onClearedName i (fun _ -> loop lit))
]
| Kapp(Eq,[typ;t1;t2]) ->
- if !old_style_flag then begin
+ if !old_style_flag then begin
match destructurate_type (pf_nf gl typ) with
- | Kapp(Nat,_) ->
+ | Kapp(Nat,_) ->
tclTHENLIST [
- (simplest_elim
+ (simplest_elim
(mkApp
(Lazy.force coq_not_eq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| Kapp(Z,_) ->
tclTHENLIST [
- (simplest_elim
+ (simplest_elim
(mkApp
(Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| _ -> loop lit
- end else begin
+ end else begin
match destructurate_type (pf_nf gl typ) with
- | Kapp(Nat,_) ->
- (tclTHEN
+ | Kapp(Nat,_) ->
+ (tclTHEN
(convert_hyp_no_check
(i,body,
(mkApp (Lazy.force coq_neq, [| t1;t2|]))))
(loop lit))
| Kapp(Z,_) ->
- (tclTHEN
+ (tclTHEN
(convert_hyp_no_check
(i,body,
(mkApp (Lazy.force coq_Zne, [| t1;t2|]))))
@@ -1786,10 +1786,10 @@ let destructure_hyps gl =
| _ -> loop lit
end
| _ -> loop lit
- end
- | _ -> loop lit
+ end
+ | _ -> loop lit
with e when catchable_exception e -> loop lit
- end
+ end
in
loop (pf_hyps gl) gl
@@ -1798,19 +1798,19 @@ let destructure_goal gl =
let rec loop t =
match destructurate_prop t with
| Kapp(Not,[t]) ->
- (tclTHEN
- (tclTHEN (unfold sp_not) intro)
+ (tclTHEN
+ (tclTHEN (unfold sp_not) intro)
destructure_hyps)
| Kimp(a,b) -> (tclTHEN intro (loop b))
| Kapp(False,[]) -> destructure_hyps
| _ ->
- (tclTHEN
+ (tclTHEN
(tclTHEN
- (Tactics.refine
+ (Tactics.refine
(mkApp (Lazy.force coq_dec_not_not, [| t;
decidability gl t; mkNewMeta () |])))
- intro)
- (destructure_hyps))
+ intro)
+ (destructure_hyps))
in
(loop concl) gl
@@ -1818,7 +1818,7 @@ let destructure_goal = all_time (destructure_goal)
let omega_solver gl =
Coqlib.check_required_library ["Coq";"omega";"Omega"];
- let result = destructure_goal gl in
- (* if !display_time_flag then begin text_time ();
+ let result = destructure_goal gl in
+ (* if !display_time_flag then begin text_time ();
flush Pervasives.stdout end; *)
result