diff options
Diffstat (limited to 'plugins/micromega/micromega.ml')
-rw-r--r-- | plugins/micromega/micromega.ml | 1512 |
1 files changed, 1512 insertions, 0 deletions
diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml new file mode 100644 index 000000000..e151e4e1d --- /dev/null +++ b/plugins/micromega/micromega.ml @@ -0,0 +1,1512 @@ +type __ = Obj.t +let __ = let rec f _ = Obj.repr f in Obj.repr f + +type bool = + | True + | False + +(** val negb : bool -> bool **) + +let negb = function + | True -> False + | False -> True + +type nat = + | O + | S of nat + +type 'a option = + | Some of 'a + | None + +type ('a, 'b) prod = + | Pair of 'a * 'b + +type comparison = + | Eq + | Lt + | Gt + +(** val compOpp : comparison -> comparison **) + +let compOpp = function + | Eq -> Eq + | Lt -> Gt + | Gt -> Lt + +type sumbool = + | Left + | Right + +type 'a sumor = + | Inleft of 'a + | Inright + +type 'a list = + | Nil + | Cons of 'a * 'a list + +(** val app : 'a1 list -> 'a1 list -> 'a1 list **) + +let rec app l m = + match l with + | Nil -> m + | Cons (a, l1) -> Cons (a, (app l1 m)) + +(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **) + +let rec nth n0 l default = + match n0 with + | O -> (match l with + | Nil -> default + | Cons (x, l') -> x) + | S m -> + (match l with + | Nil -> default + | Cons (x, t0) -> nth m t0 default) + +(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **) + +let rec map f = function + | Nil -> Nil + | Cons (a, t0) -> Cons ((f a), (map f t0)) + +type positive = + | XI of positive + | XO of positive + | XH + +(** val psucc : positive -> positive **) + +let rec psucc = function + | XI p -> XO (psucc p) + | XO p -> XI p + | XH -> XO XH + +(** val pplus : positive -> positive -> positive **) + +let rec pplus x y = + match x with + | XI p -> + (match y with + | XI q0 -> XO (pplus_carry p q0) + | XO q0 -> XI (pplus p q0) + | XH -> XO (psucc p)) + | XO p -> + (match y with + | XI q0 -> XI (pplus p q0) + | XO q0 -> XO (pplus p q0) + | XH -> XI p) + | XH -> + (match y with + | XI q0 -> XO (psucc q0) + | XO q0 -> XI q0 + | XH -> XO XH) + +(** val pplus_carry : positive -> positive -> positive **) + +and pplus_carry x y = + match x with + | XI p -> + (match y with + | XI q0 -> XI (pplus_carry p q0) + | XO q0 -> XO (pplus_carry p q0) + | XH -> XI (psucc p)) + | XO p -> + (match y with + | XI q0 -> XO (pplus_carry p q0) + | XO q0 -> XI (pplus p q0) + | XH -> XO (psucc p)) + | XH -> + (match y with + | XI q0 -> XI (psucc q0) + | XO q0 -> XO (psucc q0) + | XH -> XI XH) + +(** val p_of_succ_nat : nat -> positive **) + +let rec p_of_succ_nat = function + | O -> XH + | S x -> psucc (p_of_succ_nat x) + +(** val pdouble_minus_one : positive -> positive **) + +let rec pdouble_minus_one = function + | XI p -> XI (XO p) + | XO p -> XI (pdouble_minus_one p) + | XH -> XH + +type positive_mask = + | IsNul + | IsPos of positive + | IsNeg + +(** val pdouble_plus_one_mask : positive_mask -> positive_mask **) + +let pdouble_plus_one_mask = function + | IsNul -> IsPos XH + | IsPos p -> IsPos (XI p) + | IsNeg -> IsNeg + +(** val pdouble_mask : positive_mask -> positive_mask **) + +let pdouble_mask = function + | IsNul -> IsNul + | IsPos p -> IsPos (XO p) + | IsNeg -> IsNeg + +(** val pdouble_minus_two : positive -> positive_mask **) + +let pdouble_minus_two = function + | XI p -> IsPos (XO (XO p)) + | XO p -> IsPos (XO (pdouble_minus_one p)) + | XH -> IsNul + +(** val pminus_mask : positive -> positive -> positive_mask **) + +let rec pminus_mask x y = + match x with + | XI p -> + (match y with + | XI q0 -> pdouble_mask (pminus_mask p q0) + | XO q0 -> pdouble_plus_one_mask (pminus_mask p q0) + | XH -> IsPos (XO p)) + | XO p -> + (match y with + | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0) + | XO q0 -> pdouble_mask (pminus_mask p q0) + | XH -> IsPos (pdouble_minus_one p)) + | XH -> (match y with + | XH -> IsNul + | _ -> IsNeg) + +(** val pminus_mask_carry : positive -> positive -> positive_mask **) + +and pminus_mask_carry x y = + match x with + | XI p -> + (match y with + | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0) + | XO q0 -> pdouble_mask (pminus_mask p q0) + | XH -> IsPos (pdouble_minus_one p)) + | XO p -> + (match y with + | XI q0 -> pdouble_mask (pminus_mask_carry p q0) + | XO q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0) + | XH -> pdouble_minus_two p) + | XH -> IsNeg + +(** val pminus : positive -> positive -> positive **) + +let pminus x y = + match pminus_mask x y with + | IsPos z0 -> z0 + | _ -> XH + +(** val pmult : positive -> positive -> positive **) + +let rec pmult x y = + match x with + | XI p -> pplus y (XO (pmult p y)) + | XO p -> XO (pmult p y) + | XH -> y + +(** val pcompare : positive -> positive -> comparison -> comparison **) + +let rec pcompare x y r = + match x with + | XI p -> + (match y with + | XI q0 -> pcompare p q0 r + | XO q0 -> pcompare p q0 Gt + | XH -> Gt) + | XO p -> + (match y with + | XI q0 -> pcompare p q0 Lt + | XO q0 -> pcompare p q0 r + | XH -> Gt) + | XH -> (match y with + | XH -> r + | _ -> Lt) + +type n = + | N0 + | Npos of positive + +type z = + | Z0 + | Zpos of positive + | Zneg of positive + +(** val zdouble_plus_one : z -> z **) + +let zdouble_plus_one = function + | Z0 -> Zpos XH + | Zpos p -> Zpos (XI p) + | Zneg p -> Zneg (pdouble_minus_one p) + +(** val zdouble_minus_one : z -> z **) + +let zdouble_minus_one = function + | Z0 -> Zneg XH + | Zpos p -> Zpos (pdouble_minus_one p) + | Zneg p -> Zneg (XI p) + +(** val zdouble : z -> z **) + +let zdouble = function + | Z0 -> Z0 + | Zpos p -> Zpos (XO p) + | Zneg p -> Zneg (XO p) + +(** val zPminus : positive -> positive -> z **) + +let rec zPminus x y = + match x with + | XI p -> + (match y with + | XI q0 -> zdouble (zPminus p q0) + | XO q0 -> zdouble_plus_one (zPminus p q0) + | XH -> Zpos (XO p)) + | XO p -> + (match y with + | XI q0 -> zdouble_minus_one (zPminus p q0) + | XO q0 -> zdouble (zPminus p q0) + | XH -> Zpos (pdouble_minus_one p)) + | XH -> + (match y with + | XI q0 -> Zneg (XO q0) + | XO q0 -> Zneg (pdouble_minus_one q0) + | XH -> Z0) + +(** val zplus : z -> z -> z **) + +let zplus x y = + match x with + | Z0 -> y + | Zpos x' -> + (match y with + | Z0 -> Zpos x' + | Zpos y' -> Zpos (pplus x' y') + | Zneg y' -> + (match pcompare x' y' Eq with + | Eq -> Z0 + | Lt -> Zneg (pminus y' x') + | Gt -> Zpos (pminus x' y'))) + | Zneg x' -> + (match y with + | Z0 -> Zneg x' + | Zpos y' -> + (match pcompare x' y' Eq with + | Eq -> Z0 + | Lt -> Zpos (pminus y' x') + | Gt -> Zneg (pminus x' y')) + | Zneg y' -> Zneg (pplus x' y')) + +(** val zopp : z -> z **) + +let zopp = function + | Z0 -> Z0 + | Zpos x0 -> Zneg x0 + | Zneg x0 -> Zpos x0 + +(** val zminus : z -> z -> z **) + +let zminus m n0 = + zplus m (zopp n0) + +(** val zmult : z -> z -> z **) + +let zmult x y = + match x with + | Z0 -> Z0 + | Zpos x' -> + (match y with + | Z0 -> Z0 + | Zpos y' -> Zpos (pmult x' y') + | Zneg y' -> Zneg (pmult x' y')) + | Zneg x' -> + (match y with + | Z0 -> Z0 + | Zpos y' -> Zneg (pmult x' y') + | Zneg y' -> Zpos (pmult x' y')) + +(** val zcompare : z -> z -> comparison **) + +let zcompare x y = + match x with + | Z0 -> (match y with + | Z0 -> Eq + | Zpos y' -> Lt + | Zneg y' -> Gt) + | Zpos x' -> (match y with + | Zpos y' -> pcompare x' y' Eq + | _ -> Gt) + | Zneg x' -> + (match y with + | Zneg y' -> compOpp (pcompare x' y' Eq) + | _ -> Lt) + +(** val dcompare_inf : comparison -> sumbool sumor **) + +let dcompare_inf = function + | Eq -> Inleft Left + | Lt -> Inleft Right + | Gt -> Inright + +(** val zcompare_rec : + z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **) + +let zcompare_rec x y h1 h2 h3 = + match dcompare_inf (zcompare x y) with + | Inleft x0 -> (match x0 with + | Left -> h1 __ + | Right -> h2 __) + | Inright -> h3 __ + +(** val z_gt_dec : z -> z -> sumbool **) + +let z_gt_dec x y = + zcompare_rec x y (fun _ -> Right) (fun _ -> Right) (fun _ -> Left) + +(** val zle_bool : z -> z -> bool **) + +let zle_bool x y = + match zcompare x y with + | Gt -> False + | _ -> True + +(** val zge_bool : z -> z -> bool **) + +let zge_bool x y = + match zcompare x y with + | Lt -> False + | _ -> True + +(** val zgt_bool : z -> z -> bool **) + +let zgt_bool x y = + match zcompare x y with + | Gt -> True + | _ -> False + +(** val zeq_bool : z -> z -> bool **) + +let zeq_bool x y = + match zcompare x y with + | Eq -> True + | _ -> False + +(** val n_of_nat : nat -> n **) + +let n_of_nat = function + | O -> N0 + | S n' -> Npos (p_of_succ_nat n') + +(** val zdiv_eucl_POS : positive -> z -> (z, z) prod **) + +let rec zdiv_eucl_POS a b = + match a with + | XI a' -> + let Pair (q0, r) = zdiv_eucl_POS a' b in + let r' = zplus (zmult (Zpos (XO XH)) r) (Zpos XH) in + (match zgt_bool b r' with + | True -> Pair ((zmult (Zpos (XO XH)) q0), r') + | False -> Pair ((zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)), + (zminus r' b))) + | XO a' -> + let Pair (q0, r) = zdiv_eucl_POS a' b in + let r' = zmult (Zpos (XO XH)) r in + (match zgt_bool b r' with + | True -> Pair ((zmult (Zpos (XO XH)) q0), r') + | False -> Pair ((zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)), + (zminus r' b))) + | XH -> + (match zge_bool b (Zpos (XO XH)) with + | True -> Pair (Z0, (Zpos XH)) + | False -> Pair ((Zpos XH), Z0)) + +(** val zdiv_eucl : z -> z -> (z, z) prod **) + +let zdiv_eucl a b = + match a with + | Z0 -> Pair (Z0, Z0) + | Zpos a' -> + (match b with + | Z0 -> Pair (Z0, Z0) + | Zpos p -> zdiv_eucl_POS a' b + | Zneg b' -> + let Pair (q0, r) = zdiv_eucl_POS a' (Zpos b') in + (match r with + | Z0 -> Pair ((zopp q0), Z0) + | _ -> Pair ((zopp (zplus q0 (Zpos XH))), (zplus b r)))) + | Zneg a' -> + (match b with + | Z0 -> Pair (Z0, Z0) + | Zpos p -> + let Pair (q0, r) = zdiv_eucl_POS a' b in + (match r with + | Z0 -> Pair ((zopp q0), Z0) + | _ -> Pair ((zopp (zplus q0 (Zpos XH))), (zminus b r))) + | Zneg b' -> + let Pair (q0, r) = zdiv_eucl_POS a' (Zpos b') in + Pair (q0, (zopp r))) + +type 'c pol = + | Pc of 'c + | Pinj of positive * 'c pol + | PX of 'c pol * positive * 'c pol + +(** val p0 : 'a1 -> 'a1 pol **) + +let p0 cO = + Pc cO + +(** val p1 : 'a1 -> 'a1 pol **) + +let p1 cI = + Pc cI + +(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **) + +let rec peq ceqb p p' = + match p with + | Pc c -> (match p' with + | Pc c' -> ceqb c c' + | _ -> False) + | Pinj (j, q0) -> + (match p' with + | Pinj (j', q') -> + (match pcompare j j' Eq with + | Eq -> peq ceqb q0 q' + | _ -> False) + | _ -> False) + | PX (p2, i, q0) -> + (match p' with + | PX (p'0, i', q') -> + (match pcompare i i' Eq with + | Eq -> + (match peq ceqb p2 p'0 with + | True -> peq ceqb q0 q' + | False -> False) + | _ -> False) + | _ -> False) + +(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **) + +let mkPinj_pred j p = + match j with + | XI j0 -> Pinj ((XO j0), p) + | XO j0 -> Pinj ((pdouble_minus_one j0), p) + | XH -> p + +(** val mkPX : + 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let mkPX cO ceqb p i q0 = + match p with + | Pc c -> + (match ceqb c cO with + | True -> + (match q0 with + | Pc c0 -> q0 + | Pinj (j', q1) -> Pinj ((pplus XH j'), q1) + | PX (p2, p3, p4) -> Pinj (XH, q0)) + | False -> PX (p, i, q0)) + | Pinj (p2, p3) -> PX (p, i, q0) + | PX (p', i', q') -> + (match peq ceqb q' (p0 cO) with + | True -> PX (p', (pplus i' i), q0) + | False -> PX (p, i, q0)) + +(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **) + +let mkXi cO cI i = + PX ((p1 cI), i, (p0 cO)) + +(** val mkX : 'a1 -> 'a1 -> 'a1 pol **) + +let mkX cO cI = + mkXi cO cI XH + +(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **) + +let rec popp copp = function + | Pc c -> Pc (copp c) + | Pinj (j, q0) -> Pinj (j, (popp copp q0)) + | PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0)) + +(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **) + +let rec paddC cadd p c = + match p with + | Pc c1 -> Pc (cadd c1 c) + | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c)) + | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c)) + +(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **) + +let rec psubC csub p c = + match p with + | Pc c1 -> Pc (csub c1 c) + | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c)) + | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c)) + +(** val paddI : + ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol -> + positive -> 'a1 pol -> 'a1 pol **) + +let rec paddI cadd pop q0 j = function + | Pc c -> + let p2 = paddC cadd q0 c in + (match p2 with + | Pc c0 -> p2 + | Pinj (j', q1) -> Pinj ((pplus j j'), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Pinj (j', q') -> + (match zPminus j' j with + | Z0 -> + let p2 = pop q' q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zpos k -> + let p2 = pop (Pinj (k, q')) q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zneg k -> + let p2 = paddI cadd pop q0 k q' in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1) + | PX (p3, p4, p5) -> Pinj (j', p2))) + | PX (p2, i, q') -> + (match j with + | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q')) + | XO j0 -> PX (p2, i, (paddI cadd pop q0 (pdouble_minus_one j0) q')) + | XH -> PX (p2, i, (pop q' q0))) + +(** val psubI : + ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> + 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec psubI cadd copp pop q0 j = function + | Pc c -> + let p2 = paddC cadd (popp copp q0) c in + (match p2 with + | Pc c0 -> p2 + | Pinj (j', q1) -> Pinj ((pplus j j'), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Pinj (j', q') -> + (match zPminus j' j with + | Z0 -> + let p2 = pop q' q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zpos k -> + let p2 = pop (Pinj (k, q')) q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zneg k -> + let p2 = psubI cadd copp pop q0 k q' in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1) + | PX (p3, p4, p5) -> Pinj (j', p2))) + | PX (p2, i, q') -> + (match j with + | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q')) + | XO j0 -> PX (p2, i, + (psubI cadd copp pop q0 (pdouble_minus_one j0) q')) + | XH -> PX (p2, i, (pop q' q0))) + +(** val paddX : + 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol + -> positive -> 'a1 pol -> 'a1 pol **) + +let rec paddX cO ceqb pop p' i' p = match p with + | Pc c -> PX (p', i', p) + | Pinj (j, q') -> + (match j with + | XI j0 -> PX (p', i', (Pinj ((XO j0), q'))) + | XO j0 -> PX (p', i', (Pinj ((pdouble_minus_one j0), q'))) + | XH -> PX (p', i', q')) + | PX (p2, i, q') -> + (match zPminus i i' with + | Z0 -> mkPX cO ceqb (pop p2 p') i q' + | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q' + | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q') + +(** val psubX : + 'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 + pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec psubX cO copp ceqb pop p' i' p = match p with + | Pc c -> PX ((popp copp p'), i', p) + | Pinj (j, q') -> + (match j with + | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q'))) + | XO j0 -> PX ((popp copp p'), i', (Pinj ( + (pdouble_minus_one j0), q'))) + | XH -> PX ((popp copp p'), i', q')) + | PX (p2, i, q') -> + (match zPminus i i' with + | Z0 -> mkPX cO ceqb (pop p2 p') i q' + | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q' + | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q') + +(** val padd : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol + -> 'a1 pol **) + +let rec padd cO cadd ceqb p = function + | Pc c' -> paddC cadd p c' + | Pinj (j', q') -> paddI cadd (fun x x0 -> padd cO cadd ceqb x x0) q' j' p + | PX (p'0, i', q') -> + (match p with + | Pc c -> PX (p'0, i', (paddC cadd q' c)) + | Pinj (j, q0) -> + (match j with + | XI j0 -> PX (p'0, i', + (padd cO cadd ceqb (Pinj ((XO j0), q0)) q')) + | XO j0 -> PX (p'0, i', + (padd cO cadd ceqb (Pinj ((pdouble_minus_one j0), q0)) + q')) + | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q'))) + | PX (p2, i, q0) -> + (match zPminus i i' with + | Z0 -> + mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i + (padd cO cadd ceqb q0 q') + | Zpos k -> + mkPX cO ceqb + (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i' + (padd cO cadd ceqb q0 q') + | Zneg k -> + mkPX cO ceqb + (paddX cO ceqb (fun x x0 -> padd cO cadd ceqb x x0) p'0 + k p2) i (padd cO cadd ceqb q0 q'))) + +(** val psub : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 + -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **) + +let rec psub cO cadd csub copp ceqb p = function + | Pc c' -> psubC csub p c' + | Pinj (j', q') -> + psubI cadd copp (fun x x0 -> psub cO cadd csub copp ceqb x x0) q' j' p + | PX (p'0, i', q') -> + (match p with + | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c)) + | Pinj (j, q0) -> + (match j with + | XI j0 -> PX ((popp copp p'0), i', + (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q')) + | XO j0 -> PX ((popp copp p'0), i', + (psub cO cadd csub copp ceqb (Pinj + ((pdouble_minus_one j0), q0)) q')) + | XH -> PX ((popp copp p'0), i', + (psub cO cadd csub copp ceqb q0 q'))) + | PX (p2, i, q0) -> + (match zPminus i i' with + | Z0 -> + mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i + (psub cO cadd csub copp ceqb q0 q') + | Zpos k -> + mkPX cO ceqb + (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0) + i' (psub cO cadd csub copp ceqb q0 q') + | Zneg k -> + mkPX cO ceqb + (psubX cO copp ceqb (fun x x0 -> + psub cO cadd csub copp ceqb x x0) p'0 k p2) i + (psub cO cadd csub copp ceqb q0 q'))) + +(** val pmulC_aux : + 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 -> + 'a1 pol **) + +let rec pmulC_aux cO cmul ceqb p c = + match p with + | Pc c' -> Pc (cmul c' c) + | Pinj (j, q0) -> + let p2 = pmulC_aux cO cmul ceqb q0 c in + (match p2 with + | Pc c0 -> p2 + | Pinj (j', q1) -> Pinj ((pplus j j'), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | PX (p2, i, q0) -> + mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i + (pmulC_aux cO cmul ceqb q0 c) + +(** val pmulC : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> + 'a1 -> 'a1 pol **) + +let pmulC cO cI cmul ceqb p c = + match ceqb c cO with + | True -> p0 cO + | False -> + (match ceqb c cI with + | True -> p + | False -> pmulC_aux cO cmul ceqb p c) + +(** val pmulI : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> + 'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **) + +let rec pmulI cO cI cmul ceqb pmul0 q0 j = function + | Pc c -> + let p2 = pmulC cO cI cmul ceqb q0 c in + (match p2 with + | Pc c0 -> p2 + | Pinj (j', q1) -> Pinj ((pplus j j'), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Pinj (j', q') -> + (match zPminus j' j with + | Z0 -> + let p2 = pmul0 q' q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zpos k -> + let p2 = pmul0 (Pinj (k, q')) q0 in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1) + | PX (p3, p4, p5) -> Pinj (j, p2)) + | Zneg k -> + let p2 = pmulI cO cI cmul ceqb pmul0 q0 k q' in + (match p2 with + | Pc c -> p2 + | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1) + | PX (p3, p4, p5) -> Pinj (j', p2))) + | PX (p', i', q') -> + (match j with + | XI j' -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i' + (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q') + | XO j' -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i' + (pmulI cO cI cmul ceqb pmul0 q0 (pdouble_minus_one j') q') + | XH -> + mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' + (pmul0 q' q0)) + +(** val pmul : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **) + +let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with + | Pc c -> pmulC cO cI cmul ceqb p c + | Pinj (j', q') -> + pmulI cO cI cmul ceqb (fun x x0 -> pmul cO cI cadd cmul ceqb x x0) q' + j' p + | PX (p', i', q') -> + (match p with + | Pc c -> pmulC cO cI cmul ceqb p'' c + | Pinj (j, q0) -> + mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' + (match j with + | XI j0 -> + pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q' + | XO j0 -> + pmul cO cI cadd cmul ceqb (Pinj + ((pdouble_minus_one j0), q0)) q' + | XH -> pmul cO cI cadd cmul ceqb q0 q') + | PX (p2, i, q0) -> + padd cO cadd ceqb + (mkPX cO ceqb + (padd cO cadd ceqb + (mkPX cO ceqb (pmul cO cI cadd cmul ceqb p2 p') i (p0 cO)) + (pmul cO cI cadd cmul ceqb + (match q0 with + | Pc c -> q0 + | Pinj (j', q1) -> Pinj ((pplus XH j'), q1) + | PX (p3, p4, p5) -> Pinj (XH, q0)) p')) i' + (p0 cO)) + (mkPX cO ceqb + (pmulI cO cI cmul ceqb (fun x x0 -> + pmul cO cI cadd cmul ceqb x x0) q' XH p2) i + (pmul cO cI cadd cmul ceqb q0 q'))) + +type 'c pExpr = + | PEc of 'c + | PEX of positive + | PEadd of 'c pExpr * 'c pExpr + | PEsub of 'c pExpr * 'c pExpr + | PEmul of 'c pExpr * 'c pExpr + | PEopp of 'c pExpr + | PEpow of 'c pExpr * n + +(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **) + +let mk_X cO cI j = + mkPinj_pred j (mkX cO cI) + +(** val ppow_pos : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1 + pol **) + +let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function + | XI p3 -> + subst_l + (pmul cO cI cadd cmul ceqb + (ppow_pos cO cI cadd cmul ceqb subst_l + (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p) + | XO p3 -> + ppow_pos cO cI cadd cmul ceqb subst_l + (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3 + | XH -> subst_l (pmul cO cI cadd cmul ceqb res p) + +(** val ppow_N : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **) + +let ppow_N cO cI cadd cmul ceqb subst_l p = function + | N0 -> p1 cI + | Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2 + +(** val norm_aux : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **) + +let rec norm_aux cO cI cadd cmul csub copp ceqb = function + | PEc c -> Pc c + | PEX j -> mk_X cO cI j + | PEadd (pe1, pe2) -> + (match pe1 with + | PEopp pe3 -> + psub cO cadd csub copp ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe2) + (norm_aux cO cI cadd cmul csub copp ceqb pe3) + | _ -> + (match pe2 with + | PEopp pe3 -> + psub cO cadd csub copp ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe3) + | _ -> + padd cO cadd ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2))) + | PEsub (pe1, pe2) -> + psub cO cadd csub copp ceqb + (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2) + | PEmul (pe1, pe2) -> + pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1) + (norm_aux cO cI cadd cmul csub copp ceqb pe2) + | PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1) + | PEpow (pe1, n0) -> + ppow_N cO cI cadd cmul ceqb (fun p -> p) + (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0 + +type 'a bFormula = + | TT + | FF + | X + | A of 'a + | Cj of 'a bFormula * 'a bFormula + | D of 'a bFormula * 'a bFormula + | N of 'a bFormula + | I of 'a bFormula * 'a bFormula + +type 'term' clause = 'term' list + +type 'term' cnf = 'term' clause list + +(** val tt : 'a1 cnf **) + +let tt = + Nil + +(** val ff : 'a1 cnf **) + +let ff = + Cons (Nil, Nil) + +(** val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf **) + +let or_clause_cnf t0 f = + map (fun x -> app t0 x) f + +(** val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **) + +let rec or_cnf f f' = + match f with + | Nil -> tt + | Cons (e, rst) -> app (or_cnf rst f') (or_clause_cnf e f') + +(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **) + +let and_cnf f1 f2 = + app f1 f2 + +(** val xcnf : + ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **) + +let rec xcnf normalise0 negate0 pol0 = function + | TT -> (match pol0 with + | True -> tt + | False -> ff) + | FF -> (match pol0 with + | True -> ff + | False -> tt) + | X -> ff + | A x -> (match pol0 with + | True -> normalise0 x + | False -> negate0 x) + | Cj (e1, e2) -> + (match pol0 with + | True -> + and_cnf (xcnf normalise0 negate0 pol0 e1) + (xcnf normalise0 negate0 pol0 e2) + | False -> + or_cnf (xcnf normalise0 negate0 pol0 e1) + (xcnf normalise0 negate0 pol0 e2)) + | D (e1, e2) -> + (match pol0 with + | True -> + or_cnf (xcnf normalise0 negate0 pol0 e1) + (xcnf normalise0 negate0 pol0 e2) + | False -> + and_cnf (xcnf normalise0 negate0 pol0 e1) + (xcnf normalise0 negate0 pol0 e2)) + | N e -> xcnf normalise0 negate0 (negb pol0) e + | I (e1, e2) -> + (match pol0 with + | True -> + or_cnf (xcnf normalise0 negate0 (negb pol0) e1) + (xcnf normalise0 negate0 pol0 e2) + | False -> + and_cnf (xcnf normalise0 negate0 (negb pol0) e1) + (xcnf normalise0 negate0 pol0 e2)) + +(** val cnf_checker : + ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **) + +let rec cnf_checker checker f l = + match f with + | Nil -> True + | Cons (e, f0) -> + (match l with + | Nil -> False + | Cons (c, l0) -> + (match checker e c with + | True -> cnf_checker checker f0 l0 + | False -> False)) + +(** val tauto_checker : + ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 + bFormula -> 'a3 list -> bool **) + +let tauto_checker normalise0 negate0 checker f w = + cnf_checker checker (xcnf normalise0 negate0 True f) w + +type 'c pExprC = 'c pExpr + +type 'c polC = 'c pol + +type op1 = + | Equal + | NonEqual + | Strict + | NonStrict + +type 'c nFormula = ('c pExprC, op1) prod + +type monoidMember = nat list + +type 'c coneMember = + | S_In of nat + | S_Ideal of 'c pExprC * 'c coneMember + | S_Square of 'c pExprC + | S_Monoid of monoidMember + | S_Mult of 'c coneMember * 'c coneMember + | S_Add of 'c coneMember * 'c coneMember + | S_Pos of 'c + | S_Z + +(** val nformula_times : 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula **) + +let nformula_times f f' = + let Pair (p, op) = f in + let Pair (p', op') = f' in + Pair ((PEmul (p, p')), + (match op with + | Equal -> Equal + | NonEqual -> NonEqual + | Strict -> op' + | NonStrict -> NonStrict)) + +(** val nformula_plus : 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula **) + +let nformula_plus f f' = + let Pair (p, op) = f in + let Pair (p', op') = f' in + Pair ((PEadd (p, p')), + (match op with + | Equal -> op' + | NonEqual -> NonEqual + | Strict -> Strict + | NonStrict -> (match op' with + | Strict -> Strict + | _ -> NonStrict))) + +(** val eval_monoid : + 'a1 -> 'a1 nFormula list -> monoidMember -> 'a1 pExprC **) + +let rec eval_monoid cI l = function + | Nil -> PEc cI + | Cons (n0, ns0) -> PEmul + ((let Pair (q0, o) = nth n0 l (Pair ((PEc cI), NonEqual)) in + (match o with + | NonEqual -> q0 + | _ -> PEc cI)), (eval_monoid cI l ns0)) + +(** val eval_cone : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 + nFormula list -> 'a1 coneMember -> 'a1 nFormula **) + +let rec eval_cone cO cI ceqb cleb l = function + | S_In n0 -> + let Pair (p, o) = nth n0 l (Pair ((PEc cO), Equal)) in + (match o with + | NonEqual -> Pair ((PEc cO), Equal) + | _ -> nth n0 l (Pair ((PEc cO), Equal))) + | S_Ideal (p, cm') -> + let f = eval_cone cO cI ceqb cleb l cm' in + let Pair (q0, op) = f in + (match op with + | Equal -> Pair ((PEmul (q0, p)), Equal) + | _ -> f) + | S_Square p -> Pair ((PEmul (p, p)), NonStrict) + | S_Monoid m -> let p = eval_monoid cI l m in Pair ((PEmul (p, p)), Strict) + | S_Mult (p, q0) -> + nformula_times (eval_cone cO cI ceqb cleb l p) + (eval_cone cO cI ceqb cleb l q0) + | S_Add (p, q0) -> + nformula_plus (eval_cone cO cI ceqb cleb l p) + (eval_cone cO cI ceqb cleb l q0) + | S_Pos c -> + (match match cleb cO c with + | True -> negb (ceqb cO c) + | False -> False with + | True -> Pair ((PEc c), Strict) + | False -> Pair ((PEc cO), Equal)) + | S_Z -> Pair ((PEc cO), Equal) + +(** val normalise_pexpr : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExprC -> 'a1 polC **) + +let normalise_pexpr cO cI cplus ctimes cminus copp ceqb x = + norm_aux cO cI cplus ctimes cminus copp ceqb x + +(** val check_inconsistent : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) + -> 'a1 nFormula -> bool **) + +let check_inconsistent cO cI cplus ctimes cminus copp ceqb cleb = function + | Pair (e, op) -> + (match normalise_pexpr cO cI cplus ctimes cminus copp ceqb e with + | Pc c -> + (match op with + | Equal -> negb (ceqb c cO) + | NonEqual -> False + | Strict -> cleb c cO + | NonStrict -> + (match cleb c cO with + | True -> negb (ceqb c cO) + | False -> False)) + | _ -> False) + +(** val check_normalised_formulas : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 + -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) + -> 'a1 nFormula list -> 'a1 coneMember -> bool **) + +let check_normalised_formulas cO cI cplus ctimes cminus copp ceqb cleb l cm = + check_inconsistent cO cI cplus ctimes cminus copp ceqb cleb + (eval_cone cO cI ceqb cleb l cm) + +type op2 = + | OpEq + | OpNEq + | OpLe + | OpGe + | OpLt + | OpGt + +type 'c formula = { flhs : 'c pExprC; fop : op2; frhs : 'c pExprC } + +(** val flhs : 'a1 formula -> 'a1 pExprC **) + +let flhs x = x.flhs + +(** val fop : 'a1 formula -> op2 **) + +let fop x = x.fop + +(** val frhs : 'a1 formula -> 'a1 pExprC **) + +let frhs x = x.frhs + +(** val xnormalise : 'a1 formula -> 'a1 nFormula list **) + +let xnormalise t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + (match o with + | OpEq -> Cons ((Pair ((PEsub (lhs, rhs)), Strict)), (Cons ((Pair + ((PEsub (rhs, lhs)), Strict)), Nil))) + | OpNEq -> Cons ((Pair ((PEsub (lhs, rhs)), Equal)), Nil) + | OpLe -> Cons ((Pair ((PEsub (lhs, rhs)), Strict)), Nil) + | OpGe -> Cons ((Pair ((PEsub (rhs, lhs)), Strict)), Nil) + | OpLt -> Cons ((Pair ((PEsub (lhs, rhs)), NonStrict)), Nil) + | OpGt -> Cons ((Pair ((PEsub (rhs, lhs)), NonStrict)), Nil)) + +(** val cnf_normalise : 'a1 formula -> 'a1 nFormula cnf **) + +let cnf_normalise t0 = + map (fun x -> Cons (x, Nil)) (xnormalise t0) + +(** val xnegate : 'a1 formula -> 'a1 nFormula list **) + +let xnegate t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + (match o with + | OpEq -> Cons ((Pair ((PEsub (lhs, rhs)), Equal)), Nil) + | OpNEq -> Cons ((Pair ((PEsub (lhs, rhs)), Strict)), (Cons ((Pair + ((PEsub (rhs, lhs)), Strict)), Nil))) + | OpLe -> Cons ((Pair ((PEsub (rhs, lhs)), NonStrict)), Nil) + | OpGe -> Cons ((Pair ((PEsub (lhs, rhs)), NonStrict)), Nil) + | OpLt -> Cons ((Pair ((PEsub (rhs, lhs)), Strict)), Nil) + | OpGt -> Cons ((Pair ((PEsub (lhs, rhs)), Strict)), Nil)) + +(** val cnf_negate : 'a1 formula -> 'a1 nFormula cnf **) + +let cnf_negate t0 = + map (fun x -> Cons (x, Nil)) (xnegate t0) + +(** val simpl_expr : + 'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pExprC -> 'a1 pExprC **) + +let rec simpl_expr cI ceqb e = match e with + | PEadd (x, y) -> PEadd ((simpl_expr cI ceqb x), (simpl_expr cI ceqb y)) + | PEmul (y, z0) -> + let y' = simpl_expr cI ceqb y in + (match y' with + | PEc c -> + (match ceqb c cI with + | True -> simpl_expr cI ceqb z0 + | False -> PEmul (y', (simpl_expr cI ceqb z0))) + | _ -> PEmul (y', (simpl_expr cI ceqb z0))) + | _ -> e + +(** val simpl_cone : + 'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 + coneMember -> 'a1 coneMember **) + +let simpl_cone cO cI ctimes ceqb e = match e with + | S_Square t0 -> + (match simpl_expr cI ceqb t0 with + | PEc c -> + (match ceqb cO c with + | True -> S_Z + | False -> S_Pos (ctimes c c)) + | _ -> S_Square (simpl_expr cI ceqb t0)) + | S_Mult (t1, t2) -> + (match t1 with + | S_Mult (x, x0) -> + (match x with + | S_Pos p2 -> + (match t2 with + | S_Pos c -> S_Mult ((S_Pos (ctimes c p2)), x0) + | S_Z -> S_Z + | _ -> e) + | _ -> + (match x0 with + | S_Pos p2 -> + (match t2 with + | S_Pos c -> S_Mult ((S_Pos (ctimes c p2)), x) + | S_Z -> S_Z + | _ -> e) + | _ -> + (match t2 with + | S_Pos c -> + (match ceqb cI c with + | True -> t1 + | False -> S_Mult (t1, t2)) + | S_Z -> S_Z + | _ -> e))) + | S_Pos c -> + (match t2 with + | S_Mult (x, x0) -> + (match x with + | S_Pos p2 -> S_Mult ((S_Pos (ctimes c p2)), x0) + | _ -> + (match x0 with + | S_Pos p2 -> S_Mult ((S_Pos (ctimes c p2)), x) + | _ -> + (match ceqb cI c with + | True -> t2 + | False -> S_Mult (t1, t2)))) + | S_Add (y, z0) -> S_Add ((S_Mult ((S_Pos c), y)), (S_Mult + ((S_Pos c), z0))) + | S_Pos c0 -> S_Pos (ctimes c c0) + | S_Z -> S_Z + | _ -> + (match ceqb cI c with + | True -> t2 + | False -> S_Mult (t1, t2))) + | S_Z -> S_Z + | _ -> + (match t2 with + | S_Pos c -> + (match ceqb cI c with + | True -> t1 + | False -> S_Mult (t1, t2)) + | S_Z -> S_Z + | _ -> e)) + | S_Add (t1, t2) -> + (match t1 with + | S_Z -> t2 + | _ -> (match t2 with + | S_Z -> t1 + | _ -> S_Add (t1, t2))) + | _ -> e + +type q = { qnum : z; qden : positive } + +(** val qnum : q -> z **) + +let qnum x = x.qnum + +(** val qden : q -> positive **) + +let qden x = x.qden + +(** val qplus : q -> q -> q **) + +let qplus x y = + { qnum = (zplus (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))); + qden = (pmult x.qden y.qden) } + +(** val qmult : q -> q -> q **) + +let qmult x y = + { qnum = (zmult x.qnum y.qnum); qden = (pmult x.qden y.qden) } + +(** val qopp : q -> q **) + +let qopp x = + { qnum = (zopp x.qnum); qden = x.qden } + +(** val qminus : q -> q -> q **) + +let qminus x y = + qplus x (qopp y) + +type 'a t = + | Empty + | Leaf of 'a + | Node of 'a t * 'a * 'a t + +(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **) + +let rec find default vm p = + match vm with + | Empty -> default + | Leaf i -> i + | Node (l, e, r) -> + (match p with + | XI p2 -> find default r p2 + | XO p2 -> find default l p2 + | XH -> e) + +type zWitness = z coneMember + +(** val zWeakChecker : z nFormula list -> z coneMember -> bool **) + +let zWeakChecker x x0 = + check_normalised_formulas Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool + zle_bool x x0 + +(** val xnormalise0 : z formula -> z nFormula list **) + +let xnormalise0 t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + (match o with + | OpEq -> Cons ((Pair ((PEsub (lhs, (PEadd (rhs, (PEc (Zpos XH)))))), + NonStrict)), (Cons ((Pair ((PEsub (rhs, (PEadd (lhs, (PEc (Zpos + XH)))))), NonStrict)), Nil))) + | OpNEq -> Cons ((Pair ((PEsub (lhs, rhs)), Equal)), Nil) + | OpLe -> Cons ((Pair ((PEsub (lhs, (PEadd (rhs, (PEc (Zpos XH)))))), + NonStrict)), Nil) + | OpGe -> Cons ((Pair ((PEsub (rhs, (PEadd (lhs, (PEc (Zpos XH)))))), + NonStrict)), Nil) + | OpLt -> Cons ((Pair ((PEsub (lhs, rhs)), NonStrict)), Nil) + | OpGt -> Cons ((Pair ((PEsub (rhs, lhs)), NonStrict)), Nil)) + +(** val normalise : z formula -> z nFormula cnf **) + +let normalise t0 = + map (fun x -> Cons (x, Nil)) (xnormalise0 t0) + +(** val xnegate0 : z formula -> z nFormula list **) + +let xnegate0 t0 = + let { flhs = lhs; fop = o; frhs = rhs } = t0 in + (match o with + | OpEq -> Cons ((Pair ((PEsub (lhs, rhs)), Equal)), Nil) + | OpNEq -> Cons ((Pair ((PEsub (lhs, (PEadd (rhs, (PEc (Zpos XH)))))), + NonStrict)), (Cons ((Pair ((PEsub (rhs, (PEadd (lhs, (PEc (Zpos + XH)))))), NonStrict)), Nil))) + | OpLe -> Cons ((Pair ((PEsub (rhs, lhs)), NonStrict)), Nil) + | OpGe -> Cons ((Pair ((PEsub (lhs, rhs)), NonStrict)), Nil) + | OpLt -> Cons ((Pair ((PEsub (rhs, (PEadd (lhs, (PEc (Zpos XH)))))), + NonStrict)), Nil) + | OpGt -> Cons ((Pair ((PEsub (lhs, (PEadd (rhs, (PEc (Zpos XH)))))), + NonStrict)), Nil)) + +(** val negate : z formula -> z nFormula cnf **) + +let negate t0 = + map (fun x -> Cons (x, Nil)) (xnegate0 t0) + +(** val ceiling : z -> z -> z **) + +let ceiling a b = + let Pair (q0, r) = zdiv_eucl a b in + (match r with + | Z0 -> q0 + | _ -> zplus q0 (Zpos XH)) + +type proofTerm = + | RatProof of zWitness + | CutProof of z pExprC * q * zWitness * proofTerm + | EnumProof of q * z pExprC * q * zWitness * zWitness * proofTerm list + +(** val makeLb : z pExpr -> q -> z nFormula **) + +let makeLb v q0 = + let { qnum = n0; qden = d } = q0 in + Pair ((PEsub ((PEmul ((PEc (Zpos d)), v)), (PEc n0))), NonStrict) + +(** val qceiling : q -> z **) + +let qceiling q0 = + let { qnum = n0; qden = d } = q0 in ceiling n0 (Zpos d) + +(** val makeLbCut : z pExprC -> q -> z nFormula **) + +let makeLbCut v q0 = + Pair ((PEsub (v, (PEc (qceiling q0)))), NonStrict) + +(** val neg_nformula : z nFormula -> (z pExpr, op1) prod **) + +let neg_nformula = function + | Pair (e, o) -> Pair ((PEopp (PEadd (e, (PEc (Zpos XH))))), o) + +(** val cutChecker : + z nFormula list -> z pExpr -> q -> zWitness -> z nFormula option **) + +let cutChecker l e lb pf = + match zWeakChecker (Cons ((neg_nformula (makeLb e lb)), l)) pf with + | True -> Some (makeLbCut e lb) + | False -> None + +(** val zChecker : z nFormula list -> proofTerm -> bool **) + +let rec zChecker l = function + | RatProof pf0 -> zWeakChecker l pf0 + | CutProof (e, q0, pf0, rst) -> + (match cutChecker l e q0 pf0 with + | Some c -> zChecker (Cons (c, l)) rst + | None -> False) + | EnumProof (lb, e, ub, pf1, pf2, rst) -> + (match cutChecker l e lb pf1 with + | Some n0 -> + (match cutChecker l (PEopp e) (qopp ub) pf2 with + | Some n1 -> + let rec label pfs lb0 ub0 = + match pfs with + | Nil -> + (match z_gt_dec lb0 ub0 with + | Left -> True + | Right -> False) + | Cons (pf0, rsr) -> + (match zChecker (Cons ((Pair ((PEsub (e, (PEc + lb0))), Equal)), l)) pf0 with + | True -> label rsr (zplus lb0 (Zpos XH)) ub0 + | False -> False) + in label rst (qceiling lb) (zopp (qceiling (qopp ub))) + | None -> False) + | None -> False) + +(** val zTautoChecker : z formula bFormula -> proofTerm list -> bool **) + +let zTautoChecker f w = + tauto_checker normalise negate zChecker f w + +(** val map_cone : (nat -> nat) -> zWitness -> zWitness **) + +let rec map_cone f e = match e with + | S_In n0 -> S_In (f n0) + | S_Ideal (e0, cm) -> S_Ideal (e0, (map_cone f cm)) + | S_Monoid l -> S_Monoid (map f l) + | S_Mult (cm1, cm2) -> S_Mult ((map_cone f cm1), (map_cone f cm2)) + | S_Add (cm1, cm2) -> S_Add ((map_cone f cm1), (map_cone f cm2)) + | _ -> e + +(** val indexes : zWitness -> nat list **) + +let rec indexes = function + | S_In n0 -> Cons (n0, Nil) + | S_Ideal (e0, cm) -> indexes cm + | S_Monoid l -> l + | S_Mult (cm1, cm2) -> app (indexes cm1) (indexes cm2) + | S_Add (cm1, cm2) -> app (indexes cm1) (indexes cm2) + | _ -> Nil + +(** val n_of_Z : z -> n **) + +let n_of_Z = function + | Zpos p -> Npos p + | _ -> N0 + +(** val qeq_bool : q -> q -> bool **) + +let qeq_bool p q0 = + zeq_bool (zmult p.qnum (Zpos q0.qden)) (zmult q0.qnum (Zpos p.qden)) + +(** val qle_bool : q -> q -> bool **) + +let qle_bool x y = + zle_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden)) + +type qWitness = q coneMember + +(** val qWeakChecker : q nFormula list -> q coneMember -> bool **) + +let qWeakChecker x x0 = + check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH); + qden = XH } qplus qmult qminus qopp qeq_bool qle_bool x x0 + +(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **) + +let qTautoChecker f w = + tauto_checker (fun x -> cnf_normalise x) (fun x -> + cnf_negate x) qWeakChecker f w + |