aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/funind/invfun.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/funind/invfun.ml')
-rw-r--r--plugins/funind/invfun.ml171
1 files changed, 93 insertions, 78 deletions
diff --git a/plugins/funind/invfun.ml b/plugins/funind/invfun.ml
index 26fc88a60..94ec0a898 100644
--- a/plugins/funind/invfun.ml
+++ b/plugins/funind/invfun.ml
@@ -6,12 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
+open Ltac_plugin
open Tacexpr
open Declarations
open CErrors
open Util
open Names
open Term
+open EConstr
open Vars
open Pp
open Globnames
@@ -23,6 +25,8 @@ open Misctypes
open Termops
open Context.Rel.Declaration
+module RelDecl = Context.Rel.Declaration
+
(* Some pretty printing function for debugging purpose *)
let pr_binding prc =
@@ -106,11 +110,11 @@ let thin ids gl = Proofview.V82.of_tactic (Tactics.clear ids) gl
let make_eq () =
try
- Universes.constr_of_global (Coqlib.build_coq_eq ())
+ EConstr.of_constr (Universes.constr_of_global (Coqlib.build_coq_eq ()))
with _ -> assert false
let make_eq_refl () =
try
- Universes.constr_of_global (Coqlib.build_coq_eq_refl ())
+ EConstr.of_constr (Universes.constr_of_global (Coqlib.build_coq_eq_refl ()))
with _ -> assert false
@@ -129,15 +133,16 @@ let make_eq_refl () =
let generate_type evd g_to_f f graph i =
(*i we deduce the number of arguments of the function and its returned type from the graph i*)
let evd',graph =
- Evd.fresh_global (Global.env ()) !evd (Globnames.IndRef (fst (destInd graph)))
+ Evd.fresh_global (Global.env ()) !evd (Globnames.IndRef (fst (destInd !evd graph)))
in
+ let graph = EConstr.of_constr graph in
evd:=evd';
let graph_arity = Typing.e_type_of (Global.env ()) evd graph in
- let ctxt,_ = decompose_prod_assum graph_arity in
+ let ctxt,_ = decompose_prod_assum !evd graph_arity in
let fun_ctxt,res_type =
match ctxt with
| [] | [_] -> anomaly (Pp.str "Not a valid context")
- | decl :: fun_ctxt -> fun_ctxt, get_type decl
+ | decl :: fun_ctxt -> fun_ctxt, RelDecl.get_type decl
in
let rec args_from_decl i accu = function
| [] -> accu
@@ -148,7 +153,7 @@ let generate_type evd g_to_f f graph i =
args_from_decl (succ i) (t :: accu) l
in
(*i We need to name the vars [res] and [fv] i*)
- let filter = fun decl -> match get_name decl with
+ let filter = fun decl -> match RelDecl.get_name decl with
| Name id -> Some id
| Anonymous -> None
in
@@ -191,7 +196,7 @@ let generate_type evd g_to_f f graph i =
WARNING: while convertible, [type_of body] and [type] can be non equal
*)
let find_induction_principle evd f =
- let f_as_constant,u = match kind_of_term f with
+ let f_as_constant,u = match EConstr.kind !evd f with
| Const c' -> c'
| _ -> error "Must be used with a function"
in
@@ -200,6 +205,7 @@ let find_induction_principle evd f =
| None -> raise Not_found
| Some rect_lemma ->
let evd',rect_lemma = Evd.fresh_global (Global.env ()) !evd (Globnames.ConstRef rect_lemma) in
+ let rect_lemma = EConstr.of_constr rect_lemma in
let evd',typ = Typing.type_of ~refresh:true (Global.env ()) evd' rect_lemma in
evd:=evd';
rect_lemma,typ
@@ -244,15 +250,15 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
\[fun (x_1:t_1)\ldots(x_n:t_n)=> fun fv => fun res => res = fv \rightarrow graph\ x_1\ldots x_n\ res\]
*)
(* we the get the definition of the graphs block *)
- let graph_ind,u = destInd graphs_constr.(i) in
+ let graph_ind,u = destInd evd graphs_constr.(i) in
let kn = fst graph_ind in
let mib,_ = Global.lookup_inductive graph_ind in
(* and the principle to use in this lemma in $\zeta$ normal form *)
let f_principle,princ_type = schemes.(i) in
let princ_type = nf_zeta princ_type in
- let princ_infos = Tactics.compute_elim_sig princ_type in
+ let princ_infos = Tactics.compute_elim_sig evd princ_type in
(* The number of args of the function is then easily computable *)
- let nb_fun_args = nb_prod (pf_concl g) - 2 in
+ let nb_fun_args = nb_prod (project g) (pf_concl g) - 2 in
let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
let ids = args_names@(pf_ids_of_hyps g) in
(* Since we cannot ensure that the functional principle is defined in the
@@ -269,13 +275,13 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
(fun decl ->
List.map
(fun id -> Loc.ghost, IntroNaming (IntroIdentifier id))
- (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum (get_type decl)))))
+ (generate_fresh_id (Id.of_string "y") ids (List.length (fst (decompose_prod_assum evd (RelDecl.get_type decl)))))
)
branches
in
(* before building the full intro pattern for the principle *)
let eq_ind = make_eq () in
- let eq_construct = mkConstructUi (destInd eq_ind, 1) in
+ let eq_construct = mkConstructUi (destInd evd eq_ind, 1) in
(* The next to referencies will be used to find out which constructor to apply in each branch *)
let ind_number = ref 0
and min_constr_number = ref 0 in
@@ -304,17 +310,18 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
List.fold_right
(fun hid acc ->
let type_of_hid = pf_unsafe_type_of g (mkVar hid) in
- match kind_of_term type_of_hid with
+ let sigma = project g in
+ match EConstr.kind sigma type_of_hid with
| Prod(_,_,t') ->
begin
- match kind_of_term t' with
+ match EConstr.kind sigma t' with
| Prod(_,t'',t''') ->
begin
- match kind_of_term t'',kind_of_term t''' with
+ match EConstr.kind sigma t'',EConstr.kind sigma t''' with
| App(eq,args), App(graph',_)
when
- (eq_constr eq eq_ind) &&
- Array.exists (Constr.eq_constr_nounivs graph') graphs_constr ->
+ (EConstr.eq_constr sigma eq eq_ind) &&
+ Array.exists (EConstr.eq_constr_nounivs sigma graph') graphs_constr ->
(args.(2)::(mkApp(mkVar hid,[|args.(2);(mkApp(eq_construct,[|args.(0);args.(2)|]))|]))
::acc)
| _ -> mkVar hid :: acc
@@ -397,9 +404,9 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
match ctxt with
| [] | [_] | [_;_] -> anomaly (Pp.str "bad context")
| hres::res::decl::ctxt ->
- let res = Termops.it_mkLambda_or_LetIn
- (Termops.it_mkProd_or_LetIn concl [hres;res])
- (LocalAssum (get_name decl, get_type decl) :: ctxt)
+ let res = EConstr.it_mkLambda_or_LetIn
+ (EConstr.it_mkProd_or_LetIn concl [hres;res])
+ (LocalAssum (RelDecl.get_name decl, RelDecl.get_type decl) :: ctxt)
in
res
)
@@ -415,7 +422,7 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
let params_bindings,avoid =
List.fold_left2
(fun (bindings,avoid) decl p ->
- let id = Namegen.next_ident_away (Nameops.out_name (get_name decl)) avoid in
+ let id = Namegen.next_ident_away (Nameops.out_name (RelDecl.get_name decl)) avoid in
p::bindings,id::avoid
)
([],pf_ids_of_hyps g)
@@ -425,7 +432,7 @@ let prove_fun_correct evd functional_induction funs_constr graphs_constr schemes
let lemmas_bindings =
List.rev (fst (List.fold_left2
(fun (bindings,avoid) decl p ->
- let id = Namegen.next_ident_away (Nameops.out_name (get_name decl)) avoid in
+ let id = Namegen.next_ident_away (Nameops.out_name (RelDecl.get_name decl)) avoid in
(nf_zeta p)::bindings,id::avoid)
([],avoid)
princ_infos.predicates
@@ -465,7 +472,7 @@ let generalize_dependent_of x hyp g =
tclMAP
(function
| LocalAssum (id,t) when not (Id.equal id hyp) &&
- (Termops.occur_var (pf_env g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id])
+ (Termops.occur_var (pf_env g) (project g) x t) -> tclTHEN (Proofview.V82.of_tactic (Tactics.generalize [mkVar id])) (thin [id])
| _ -> tclIDTAC
)
(pf_hyps g)
@@ -489,43 +496,44 @@ let rec intros_with_rewrite g =
and intros_with_rewrite_aux : tactic =
fun g ->
let eq_ind = make_eq () in
- match kind_of_term (pf_concl g) with
+ let sigma = project g in
+ match EConstr.kind sigma (pf_concl g) with
| Prod(_,t,t') ->
begin
- match kind_of_term t with
- | App(eq,args) when (eq_constr eq eq_ind) ->
+ match EConstr.kind sigma t with
+ | App(eq,args) when (EConstr.eq_constr sigma eq eq_ind) ->
if Reductionops.is_conv (pf_env g) (project g) args.(1) args.(2)
then
let id = pf_get_new_id (Id.of_string "y") g in
tclTHENSEQ [ Proofview.V82.of_tactic (Simple.intro id); thin [id]; intros_with_rewrite ] g
- else if isVar args.(1) && (Environ.evaluable_named (destVar args.(1)) (pf_env g))
+ else if isVar sigma args.(1) && (Environ.evaluable_named (destVar sigma args.(1)) (pf_env g))
then tclTHENSEQ[
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar args.(1)))]);
- tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar args.(1)))] ((destVar args.(1)),Locus.InHyp) )))
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(1)))] ((destVar sigma args.(1)),Locus.InHyp) )))
(pf_ids_of_hyps g);
intros_with_rewrite
] g
- else if isVar args.(2) && (Environ.evaluable_named (destVar args.(2)) (pf_env g))
+ else if isVar sigma args.(2) && (Environ.evaluable_named (destVar sigma args.(2)) (pf_env g))
then tclTHENSEQ[
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar args.(2)))]);
- tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar args.(2)))] ((destVar args.(2)),Locus.InHyp) )))
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))]);
+ tclMAP (fun id -> tclTRY(Proofview.V82.of_tactic (unfold_in_hyp [(Locus.AllOccurrences, Names.EvalVarRef (destVar sigma args.(2)))] ((destVar sigma args.(2)),Locus.InHyp) )))
(pf_ids_of_hyps g);
intros_with_rewrite
] g
- else if isVar args.(1)
+ else if isVar sigma args.(1)
then
let id = pf_get_new_id (Id.of_string "y") g in
tclTHENSEQ [ Proofview.V82.of_tactic (Simple.intro id);
- generalize_dependent_of (destVar args.(1)) id;
+ generalize_dependent_of (destVar sigma args.(1)) id;
tclTRY (Proofview.V82.of_tactic (Equality.rewriteLR (mkVar id)));
intros_with_rewrite
]
g
- else if isVar args.(2)
+ else if isVar sigma args.(2)
then
let id = pf_get_new_id (Id.of_string "y") g in
tclTHENSEQ [ Proofview.V82.of_tactic (Simple.intro id);
- generalize_dependent_of (destVar args.(2)) id;
+ generalize_dependent_of (destVar sigma args.(2)) id;
tclTRY (Proofview.V82.of_tactic (Equality.rewriteRL (mkVar id)));
intros_with_rewrite
]
@@ -539,7 +547,7 @@ and intros_with_rewrite_aux : tactic =
intros_with_rewrite
] g
end
- | Ind _ when eq_constr t (Coqlib.build_coq_False ()) ->
+ | Ind _ when EConstr.eq_constr sigma t (EConstr.of_constr (Coqlib.build_coq_False ())) ->
Proofview.V82.of_tactic tauto g
| Case(_,_,v,_) ->
tclTHENSEQ[
@@ -577,7 +585,7 @@ and intros_with_rewrite_aux : tactic =
let rec reflexivity_with_destruct_cases g =
let destruct_case () =
try
- match kind_of_term (snd (destApp (pf_concl g))).(2) with
+ match EConstr.kind (project g) (snd (destApp (project g) (pf_concl g))).(2) with
| Case(_,_,v,_) ->
tclTHENSEQ[
Proofview.V82.of_tactic (simplest_case v);
@@ -594,8 +602,8 @@ let rec reflexivity_with_destruct_cases g =
match sc with
None -> tclIDTAC g
| Some id ->
- match kind_of_term (pf_unsafe_type_of g (mkVar id)) with
- | App(eq,[|_;t1;t2|]) when eq_constr eq eq_ind ->
+ match EConstr.kind (project g) (pf_unsafe_type_of g (mkVar id)) with
+ | App(eq,[|_;t1;t2|]) when EConstr.eq_constr (project g) eq eq_ind ->
if Equality.discriminable (pf_env g) (project g) t1 t2
then Proofview.V82.of_tactic (Equality.discrHyp id) g
else if Equality.injectable (pf_env g) (project g) t1 t2
@@ -653,18 +661,18 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
*)
let lemmas =
Array.map
- (fun (_,(ctxt,concl)) -> nf_zeta (Termops.it_mkLambda_or_LetIn concl ctxt))
+ (fun (_,(ctxt,concl)) -> nf_zeta (EConstr.it_mkLambda_or_LetIn concl ctxt))
lemmas_types_infos
in
(* We get the constant and the principle corresponding to this lemma *)
let f = funcs.(i) in
- let graph_principle = nf_zeta schemes.(i) in
+ let graph_principle = nf_zeta (EConstr.of_constr schemes.(i)) in
let princ_type = pf_unsafe_type_of g graph_principle in
- let princ_infos = Tactics.compute_elim_sig princ_type in
+ let princ_infos = Tactics.compute_elim_sig (project g) princ_type in
(* Then we get the number of argument of the function
and compute a fresh name for each of them
*)
- let nb_fun_args = nb_prod (pf_concl g) - 2 in
+ let nb_fun_args = nb_prod (project g) (pf_concl g) - 2 in
let args_names = generate_fresh_id (Id.of_string "x") [] nb_fun_args in
let ids = args_names@(pf_ids_of_hyps g) in
(* and fresh names for res H and the principle (cf bug bug #1174) *)
@@ -682,7 +690,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
(fun decl ->
List.map
(fun id -> id)
- (generate_fresh_id (Id.of_string "y") ids (nb_prod (get_type decl)))
+ (generate_fresh_id (Id.of_string "y") ids (nb_prod (project g) (RelDecl.get_type decl)))
)
branches
in
@@ -693,7 +701,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
let rewrite_tac j ids : tactic =
let graph_def = graphs.(j) in
let infos =
- try find_Function_infos (fst (destConst funcs.(j)))
+ try find_Function_infos (fst (destConst (project g) funcs.(j)))
with Not_found -> error "No graph found"
in
if infos.is_general
@@ -719,7 +727,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
thin ids
]
else
- Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst f)))])
+ Proofview.V82.of_tactic (unfold_in_concl [(Locus.AllOccurrences, Names.EvalConstRef (fst (destConst (project g) f)))])
in
(* The proof of each branche itself *)
let ind_number = ref 0 in
@@ -750,6 +758,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
g
in
let params_names = fst (List.chop princ_infos.nparams args_names) in
+ let open EConstr in
let params = List.map mkVar params_names in
tclTHENSEQ
[ tclMAP (fun id -> Proofview.V82.of_tactic (Simple.intro id)) (args_names@[res;hres]);
@@ -774,7 +783,8 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
assert (funs <> []);
assert (graphs <> []);
let funs = Array.of_list funs and graphs = Array.of_list graphs in
- let funs_constr = Array.map mkConstU funs in
+ let map (c, u) = mkConstU (c, EInstance.make u) in
+ let funs_constr = Array.map map funs in
States.with_state_protection_on_exception
(fun () ->
let env = Global.env () in
@@ -789,10 +799,10 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
in
let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
graphs_constr.(i) <- graph;
- let type_of_lemma = Termops.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
+ let type_of_lemma = EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
let _ = Typing.e_type_of (Global.env ()) evd type_of_lemma in
let type_of_lemma = nf_zeta type_of_lemma in
- observe (str "type_of_lemma := " ++ Printer.pr_lconstr_env (Global.env ()) !evd type_of_lemma);
+ observe (str "type_of_lemma := " ++ Printer.pr_leconstr_env (Global.env ()) !evd type_of_lemma);
type_of_lemma,type_info
)
funs_constr
@@ -811,7 +821,7 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
Array.of_list
(List.map
(fun entry ->
- (fst (fst(Future.force entry.Entries.const_entry_body)), Option.get entry.Entries.const_entry_type )
+ (EConstr.of_constr (fst (fst(Future.force entry.Entries.const_entry_body))), EConstr.of_constr (Option.get entry.Entries.const_entry_type ))
)
(make_scheme evd (Array.map_to_list (fun const -> const,GType []) funs))
)
@@ -842,7 +852,8 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
(* let lem_cst = fst (destConst (Constrintern.global_reference lem_id)) in *)
let _,lem_cst_constr = Evd.fresh_global
(Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
- let (lem_cst,_) = destConst lem_cst_constr in
+ let lem_cst_constr = EConstr.of_constr lem_cst_constr in
+ let (lem_cst,_) = destConst !evd lem_cst_constr in
update_Function {finfo with correctness_lemma = Some lem_cst};
)
@@ -856,23 +867,23 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
let type_info = (type_of_lemma_ctxt,type_of_lemma_concl) in
graphs_constr.(i) <- graph;
let type_of_lemma =
- Termops.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
+ EConstr.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt
in
let type_of_lemma = nf_zeta type_of_lemma in
- observe (str "type_of_lemma := " ++ Printer.pr_lconstr type_of_lemma);
+ observe (str "type_of_lemma := " ++ Printer.pr_leconstr type_of_lemma);
type_of_lemma,type_info
)
funs_constr
graphs_constr
in
- let (kn,_) as graph_ind,u = (destInd graphs_constr.(0)) in
+ let (kn,_) as graph_ind,u = (destInd !evd graphs_constr.(0)) in
let mib,mip = Global.lookup_inductive graph_ind in
let sigma, scheme =
(Indrec.build_mutual_induction_scheme (Global.env ()) !evd
(Array.to_list
(Array.mapi
- (fun i _ -> ((kn,i),u(* Univ.Instance.empty *)),true,InType)
+ (fun i _ -> ((kn,i), EInstance.kind !evd u),true,InType)
mib.Declarations.mind_packets
)
)
@@ -902,7 +913,8 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
let finfo = find_Function_infos (fst f_as_constant) in
let _,lem_cst_constr = Evd.fresh_global
(Global.env ()) !evd (Constrintern.locate_reference (Libnames.qualid_of_ident lem_id)) in
- let (lem_cst,_) = destConst lem_cst_constr in
+ let lem_cst_constr = EConstr.of_constr lem_cst_constr in
+ let (lem_cst,_) = destConst !evd lem_cst_constr in
update_Function {finfo with completeness_lemma = Some lem_cst}
)
funs)
@@ -917,10 +929,11 @@ let derive_correctness make_scheme functional_induction (funs: pconstant list) (
if the type of hypothesis has not this form or if we cannot find the completeness lemma then we do nothing
*)
let revert_graph kn post_tac hid g =
+ let sigma = project g in
let typ = pf_unsafe_type_of g (mkVar hid) in
- match kind_of_term typ with
- | App(i,args) when isInd i ->
- let ((kn',num) as ind'),u = destInd i in
+ match EConstr.kind sigma typ with
+ | App(i,args) when isInd sigma i ->
+ let ((kn',num) as ind'),u = destInd sigma i in
if MutInd.equal kn kn'
then (* We have generated a graph hypothesis so that we must change it if we can *)
let info =
@@ -968,14 +981,15 @@ let revert_graph kn post_tac hid g =
let functional_inversion kn hid fconst f_correct : tactic =
fun g ->
let old_ids = List.fold_right Id.Set.add (pf_ids_of_hyps g) Id.Set.empty in
+ let sigma = project g in
let type_of_h = pf_unsafe_type_of g (mkVar hid) in
- match kind_of_term type_of_h with
- | App(eq,args) when eq_constr eq (make_eq ()) ->
+ match EConstr.kind sigma type_of_h with
+ | App(eq,args) when EConstr.eq_constr sigma eq (make_eq ()) ->
let pre_tac,f_args,res =
- match kind_of_term args.(1),kind_of_term args.(2) with
- | App(f,f_args),_ when eq_constr f fconst ->
+ match EConstr.kind sigma args.(1),EConstr.kind sigma args.(2) with
+ | App(f,f_args),_ when EConstr.eq_constr sigma f fconst ->
((fun hid -> Proofview.V82.of_tactic (intros_symmetry (Locusops.onHyp hid))),f_args,args.(2))
- |_,App(f,f_args) when eq_constr f fconst ->
+ |_,App(f,f_args) when EConstr.eq_constr sigma f fconst ->
((fun hid -> tclIDTAC),f_args,args.(1))
| _ -> (fun hid -> tclFAIL 1 (mt ())),[||],args.(2)
in
@@ -998,7 +1012,7 @@ let invfun qhyp f =
let f =
match f with
| ConstRef f -> f
- | _ -> raise (CErrors.UserError("",str "Not a function"))
+ | _ -> raise (CErrors.UserError(None,str "Not a function"))
in
try
let finfos = find_Function_infos f in
@@ -1020,42 +1034,43 @@ let invfun qhyp f g =
Proofview.V82.of_tactic begin
Tactics.try_intros_until
(fun hid -> Proofview.V82.tactic begin fun g ->
+ let sigma = project g in
let hyp_typ = pf_unsafe_type_of g (mkVar hid) in
- match kind_of_term hyp_typ with
- | App(eq,args) when eq_constr eq (make_eq ()) ->
+ match EConstr.kind sigma hyp_typ with
+ | App(eq,args) when EConstr.eq_constr sigma eq (make_eq ()) ->
begin
- let f1,_ = decompose_app args.(1) in
+ let f1,_ = decompose_app sigma args.(1) in
try
- if not (isConst f1) then failwith "";
- let finfos = find_Function_infos (fst (destConst f1)) in
+ if not (isConst sigma f1) then failwith "";
+ let finfos = find_Function_infos (fst (destConst sigma f1)) in
let f_correct = mkConst(Option.get finfos.correctness_lemma)
and kn = fst finfos.graph_ind
in
functional_inversion kn hid f1 f_correct g
with | Failure "" | Option.IsNone | Not_found ->
try
- let f2,_ = decompose_app args.(2) in
- if not (isConst f2) then failwith "";
- let finfos = find_Function_infos (fst (destConst f2)) in
+ let f2,_ = decompose_app sigma args.(2) in
+ if not (isConst sigma f2) then failwith "";
+ let finfos = find_Function_infos (fst (destConst sigma f2)) in
let f_correct = mkConst(Option.get finfos.correctness_lemma)
and kn = fst finfos.graph_ind
in
functional_inversion kn hid f2 f_correct g
with
| Failure "" ->
- errorlabstrm "" (str "Hypothesis " ++ Ppconstr.pr_id hid ++ str " must contain at least one Function")
+ user_err (str "Hypothesis " ++ Ppconstr.pr_id hid ++ str " must contain at least one Function")
| Option.IsNone ->
if do_observe ()
then
error "Cannot use equivalence with graph for any side of the equality"
- else errorlabstrm "" (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
+ else user_err (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
| Not_found ->
if do_observe ()
then
error "No graph found for any side of equality"
- else errorlabstrm "" (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
+ else user_err (str "Cannot find inversion information for hypothesis " ++ Ppconstr.pr_id hid)
end
- | _ -> errorlabstrm "" (Ppconstr.pr_id hid ++ str " must be an equality ")
+ | _ -> user_err (Ppconstr.pr_id hid ++ str " must be an equality ")
end)
qhyp
end