aboutsummaryrefslogtreecommitdiffhomepage
path: root/plugins/btauto/Algebra.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/btauto/Algebra.v')
-rw-r--r--plugins/btauto/Algebra.v259
1 files changed, 144 insertions, 115 deletions
diff --git a/plugins/btauto/Algebra.v b/plugins/btauto/Algebra.v
index e3ac563fb..a515deefd 100644
--- a/plugins/btauto/Algebra.v
+++ b/plugins/btauto/Algebra.v
@@ -1,4 +1,4 @@
-Require Import Bool Arith DecidableClass.
+Require Import Bool PArith DecidableClass ROmega.
Ltac bool :=
repeat match goal with
@@ -57,10 +57,10 @@ Ltac case_decide := match goal with
let b := fresh "b" in
let H := fresh "H" in
define (@decide P D) b H; destruct b; try_decide
-| [ |- context [nat_compare ?x ?y] ] =>
- destruct (nat_compare_spec x y); try (exfalso; omega)
-| [ X : context [nat_compare ?x ?y] |- _ ] =>
- destruct (nat_compare_spec x y); try (exfalso; omega)
+| [ |- context [Pos.compare ?x ?y] ] =>
+ destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
+| [ X : context [Pos.compare ?x ?y] |- _ ] =>
+ destruct (Pos.compare_spec x y); try (exfalso; zify; romega)
end.
Section Definitions.
@@ -72,7 +72,7 @@ Section Definitions.
Inductive poly :=
| Cst : bool -> poly
-| Poly : poly -> nat -> poly -> poly.
+| Poly : poly -> positive -> poly -> poly.
(* TODO: We should use [positive] instead of [nat] to encode variables, for
efficiency purpose. *)
@@ -84,23 +84,41 @@ Inductive null : poly -> Prop :=
polynomial [p] satisfies [valid n p] whenever it is well-formed and each of
its variable indices is < [n]. *)
-Inductive valid : nat -> poly -> Prop :=
+Inductive valid : positive -> poly -> Prop :=
| valid_cst : forall k c, valid k (Cst c)
| valid_poly : forall k p i q,
- i < k -> ~ null q -> valid i p -> valid (S i) q -> valid k (Poly p i q).
+ Pos.lt i k -> ~ null q -> valid i p -> valid (Pos.succ i) q -> valid k (Poly p i q).
(** Linear polynomials are valid polynomials in which every variable appears at
most once. *)
-Inductive linear : nat -> poly -> Prop :=
+Inductive linear : positive -> poly -> Prop :=
| linear_cst : forall k c, linear k (Cst c)
-| linear_poly : forall k p i q, i < k -> ~ null q ->
+| linear_poly : forall k p i q, Pos.lt i k -> ~ null q ->
linear i p -> linear i q -> linear k (Poly p i q).
End Definitions.
Section Computational.
+Program Instance Decidable_PosEq : forall (p q : positive), Decidable (p = q) :=
+ { Decidable_witness := Pos.eqb p q }.
+Next Obligation.
+apply Pos.eqb_eq.
+Qed.
+
+Program Instance Decidable_PosLt : forall p q, Decidable (Pos.lt p q) :=
+ { Decidable_witness := Pos.ltb p q }.
+Next Obligation.
+apply Pos.ltb_lt.
+Qed.
+
+Program Instance Decidable_PosLe : forall p q, Decidable (Pos.le p q) :=
+ { Decidable_witness := Pos.leb p q }.
+Next Obligation.
+apply Pos.leb_le.
+Qed.
+
(** * The core reflexive part. *)
Hint Constructors valid.
@@ -135,18 +153,22 @@ Qed.
Program Instance Decidable_null : forall p, Decidable (null p) := {
Decidable_witness := match p with Cst false => true | _ => false end
}.
-
Next Obligation.
split.
destruct p as [[]|]; first [discriminate|constructor].
inversion 1; trivial.
Qed.
+Definition list_nth {A} p (l : list A) def :=
+ Pos.peano_rect (fun _ => list A -> A)
+ (fun l => match l with nil => def | cons t l => t end)
+ (fun _ F l => match l with nil => def | cons t l => F l end) p l.
+
Fixpoint eval var (p : poly) :=
match p with
| Cst c => c
| Poly p i q =>
- let vi := List.nth i var false in
+ let vi := list_nth i var false in
xorb (eval var p) (andb vi (eval var q))
end.
@@ -154,8 +176,8 @@ Fixpoint valid_dec k p :=
match p with
| Cst c => true
| Poly p i q =>
- negb (decide (null q)) && decide (i < k) &&
- valid_dec i p && valid_dec (S i) q
+ negb (decide (null q)) && decide (i < k)%positive &&
+ valid_dec i p && valid_dec (Pos.succ i) q
end.
Program Instance Decidable_valid : forall n p, Decidable (valid n p) := {
@@ -182,7 +204,7 @@ match pl with
fix F pr {struct pr} := match pr with
| Cst cr => Poly (poly_add pl pr) il ql
| Poly pr ir qr =>
- match nat_compare il ir with
+ match Pos.compare il ir with
| Eq =>
let qs := poly_add ql qr in
(* Ensure validity *)
@@ -214,7 +236,7 @@ match p with
if decide (null p) then p
else Poly (Cst false) k p
| Poly p i q =>
- if decide (i <= k) then Poly (Cst false) k (Poly p i q)
+ if decide (i <= k)%positive then Poly (Cst false) k (Poly p i q)
else Poly (poly_mul_mon k p) i (poly_mul_mon k q)
end.
@@ -268,20 +290,21 @@ Section Validity.
Hint Constructors valid linear.
-Lemma valid_le_compat : forall k l p, valid k p -> k <= l -> valid l p.
+Lemma valid_le_compat : forall k l p, valid k p -> (k <= l)%positive -> valid l p.
Proof.
-intros k l p H Hl; induction H; constructor; eauto with arith.
+intros k l p H Hl; induction H; constructor; eauto.
+now eapply Pos.lt_le_trans; eassumption.
Qed.
-Lemma linear_le_compat : forall k l p, linear k p -> k <= l -> linear l p.
+Lemma linear_le_compat : forall k l p, linear k p -> (k <= l)%positive -> linear l p.
Proof.
-intros k l p H; revert l; induction H; intuition.
+intros k l p H; revert l; induction H; constructor; eauto; zify; romega.
Qed.
Lemma linear_valid_incl : forall k p, linear k p -> valid k p.
Proof.
intros k p H; induction H; constructor; auto.
-eapply valid_le_compat; eauto.
+eapply valid_le_compat; eauto; zify; romega.
Qed.
End Validity.
@@ -296,35 +319,35 @@ intros p var []; reflexivity.
Qed.
Lemma eval_extensional_eq_compat : forall p var1 var2,
- (forall x, List.nth x var1 false = List.nth x var2 false) -> eval var1 p = eval var2 p.
+ (forall x, list_nth x var1 false = list_nth x var2 false) -> eval var1 p = eval var2 p.
Proof.
intros p var1 var2 H; induction p; simpl; try_rewrite; auto.
Qed.
Lemma eval_suffix_compat : forall k p var1 var2,
- (forall i, i < k -> List.nth i var1 false = List.nth i var2 false) -> valid k p ->
+ (forall i, (i < k)%positive -> list_nth i var1 false = list_nth i var2 false) -> valid k p ->
eval var1 p = eval var2 p.
Proof.
intros k p var1 var2 Hvar Hv; revert var1 var2 Hvar.
induction Hv; intros var1 var2 Hvar; simpl; [now auto|].
-rewrite Hvar; [|now auto]; erewrite (IHHv1 var1 var2); [|now intuition].
-erewrite (IHHv2 var1 var2); [ring|now intuition].
+rewrite Hvar; [|now auto]; erewrite (IHHv1 var1 var2).
+ + erewrite (IHHv2 var1 var2); [ring|].
+ intros; apply Hvar; zify; omega.
+ + intros; apply Hvar; zify; omega.
Qed.
End Evaluation.
Section Algebra.
-Require Import NPeano.
-
(* Compatibility with evaluation *)
Lemma poly_add_compat : forall pl pr var, eval var (poly_add pl pr) = xorb (eval var pl) (eval var pr).
Proof.
intros pl; induction pl; intros pr var; simpl.
- induction pr; simpl; auto; solve [try_rewrite; ring].
- induction pr; simpl; auto; try solve [try_rewrite; simpl; ring].
- destruct (nat_compare_spec n n0); repeat case_decide; simpl; first [try_rewrite; ring|idtac].
++ induction pr; simpl; auto; solve [try_rewrite; ring].
++ induction pr; simpl; auto; try solve [try_rewrite; simpl; ring].
+ destruct (Pos.compare_spec p p0); repeat case_decide; simpl; first [try_rewrite; ring|idtac].
try_rewrite; ring_simplify; repeat rewrite xorb_assoc.
match goal with [ |- context [xorb (andb ?b1 ?b2) (andb ?b1 ?b3)] ] =>
replace (xorb (andb b1 b2) (andb b1 b3)) with (andb b1 (xorb b2 b3)) by ring
@@ -339,12 +362,12 @@ Lemma poly_mul_cst_compat : forall v p var,
Proof.
intros v p; induction p; intros var; simpl; [ring|].
case_decide; simpl; try_rewrite; [ring_simplify|ring].
-replace (v && List.nth n var false && eval var p2) with (List.nth n var false && (v && eval var p2)) by ring.
+replace (v && list_nth p2 var false && eval var p3) with (list_nth p2 var false && (v && eval var p3)) by ring.
rewrite <- IHp2; inversion H; simpl; ring.
Qed.
Lemma poly_mul_mon_compat : forall i p var,
- eval var (poly_mul_mon i p) = (List.nth i var false && eval var p).
+ eval var (poly_mul_mon i p) = (list_nth i var false && eval var p).
Proof.
intros i p var; induction p; simpl; case_decide; simpl; try_rewrite; try ring.
inversion H; ring.
@@ -358,50 +381,55 @@ intros pl; induction pl; intros pr var; simpl.
apply poly_mul_cst_compat.
case_decide; simpl.
rewrite IHpl1; ring_simplify.
- replace (eval var pr && List.nth n var false && eval var pl2)
- with (List.nth n var false && (eval var pl2 && eval var pr)) by ring.
+ replace (eval var pr && list_nth p var false && eval var pl2)
+ with (list_nth p var false && (eval var pl2 && eval var pr)) by ring.
now rewrite <- IHpl2; inversion H; simpl; ring.
rewrite poly_add_compat, poly_mul_mon_compat, IHpl1, IHpl2; ring.
Qed.
Hint Extern 5 =>
match goal with
-| [ |- max ?x ?y <= ?z ] =>
- apply Nat.max_case_strong; intros; omega
-| [ |- ?z <= max ?x ?y ] =>
- apply Nat.max_case_strong; intros; omega
+| [ |- (Pos.max ?x ?y <= ?z)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (?z <= Pos.max ?x ?y)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (Pos.max ?x ?y < ?z)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| [ |- (?z < Pos.max ?x ?y)%positive ] =>
+ apply Pos.max_case_strong; intros; zify; romega
+| _ => zify; omega
end.
-Hint Resolve Nat.le_max_r Nat.le_max_l.
+Hint Resolve Pos.le_max_r Pos.le_max_l.
Hint Constructors valid linear.
(* Compatibility of validity w.r.t algebraic operations *)
Lemma poly_add_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
- valid (max kl kr) (poly_add pl pr).
+ valid (Pos.max kl kr) (poly_add pl pr).
Proof.
intros kl kr pl pr Hl Hr; revert kr pr Hr; induction Hl; intros kr pr Hr; simpl.
- eapply valid_le_compat; [clear k|apply Nat.le_max_r].
- now induction Hr; auto.
- assert (Hle : max (S i) kr <= max k kr).
- apply Nat.max_case_strong; intros; apply Nat.max_case_strong; intros; auto; omega.
- apply (valid_le_compat (max (S i) kr)); [|assumption].
+{ eapply valid_le_compat; [clear k|apply Pos.le_max_r].
+ now induction Hr; auto. }
+{ assert (Hle : (Pos.max (Pos.succ i) kr <= Pos.max k kr)%positive) by auto.
+ apply (valid_le_compat (Pos.max (Pos.succ i) kr)); [|assumption].
clear - IHHl1 IHHl2 Hl2 Hr H0; induction Hr.
constructor; auto.
- now rewrite <- (Nat.max_id i); intuition.
- destruct (nat_compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
- now apply (valid_le_compat (max i0 i0)); [now auto|]; rewrite Nat.max_id; auto.
- now apply (valid_le_compat (max i0 i0)); [now auto|]; rewrite Nat.max_id; auto.
- now apply (valid_le_compat (max (S i0) (S i0))); [now auto|]; rewrite Nat.max_id; auto.
- now apply (valid_le_compat (max (S i) i0)); intuition.
- now apply (valid_le_compat (max i (S i0))); intuition.
+ now rewrite <- (Pos.max_id i); intuition.
+ destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
+ + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto.
+ + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; zify; romega.
+ + apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; zify; romega.
+ + apply (valid_le_compat (Pos.max (Pos.succ i) i0)); intuition.
+ + apply (valid_le_compat (Pos.max i (Pos.succ i0))); intuition.
+}
Qed.
Lemma poly_mul_cst_valid_compat : forall k v p, valid k p -> valid k (poly_mul_cst v p).
Proof.
intros k v p H; induction H; simpl; [now auto|].
case_decide; [|now auto].
-eapply (valid_le_compat i); [now auto|omega].
+eapply (valid_le_compat i); [now auto|zify; romega].
Qed.
Lemma poly_mul_mon_null_compat : forall i p, null (poly_mul_mon i p) -> null p.
@@ -409,50 +437,51 @@ Proof.
intros i p; induction p; simpl; case_decide; simpl; inversion 1; intuition.
Qed.
-Lemma poly_mul_mon_valid_compat : forall k i p, valid k p -> valid (max (S i) k) (poly_mul_mon i p).
+Lemma poly_mul_mon_valid_compat : forall k i p,
+ valid k p -> valid (Pos.max (Pos.succ i) k) (poly_mul_mon i p).
Proof.
intros k i p H; induction H; simpl poly_mul_mon; case_decide; intuition.
-apply (valid_le_compat (S i)); auto; constructor; intuition.
-match goal with [ H : null ?p |- _ ] => solve[inversion H] end.
-apply (valid_le_compat k); auto; constructor; intuition.
- assert (X := poly_mul_mon_null_compat); intuition eauto.
- now cutrewrite <- (max (S i) i0 = i0); intuition.
- now cutrewrite <- (max (S i) (S i0) = S i0); intuition.
++ apply (valid_le_compat (Pos.succ i)); auto; constructor; intuition.
+ - match goal with [ H : null ?p |- _ ] => solve[inversion H] end.
++ apply (valid_le_compat k); auto; constructor; intuition.
+ - assert (X := poly_mul_mon_null_compat); intuition eauto.
+ - cutrewrite <- (Pos.max (Pos.succ i) i0 = i0); intuition.
+ - cutrewrite <- (Pos.max (Pos.succ i) (Pos.succ i0) = Pos.succ i0); intuition.
Qed.
Lemma poly_mul_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr ->
- valid (max kl kr) (poly_mul pl pr).
+ valid (Pos.max kl kr) (poly_mul pl pr).
Proof.
intros kl kr pl pr Hl Hr; revert kr pr Hr.
induction Hl; intros kr pr Hr; simpl.
- apply poly_mul_cst_valid_compat; auto.
++ apply poly_mul_cst_valid_compat; auto.
apply (valid_le_compat kr); now auto.
- apply (valid_le_compat (max (max i kr) (max (S i) (max (S i) kr)))).
- case_decide.
- now apply (valid_le_compat (max i kr)); auto.
- apply poly_add_valid_compat; auto.
- now apply poly_mul_mon_valid_compat; intuition.
- repeat apply Nat.max_case_strong; omega.
++ apply (valid_le_compat (Pos.max (Pos.max i kr) (Pos.max (Pos.succ i) (Pos.max (Pos.succ i) kr)))).
+ - case_decide.
+ { apply (valid_le_compat (Pos.max i kr)); auto. }
+ { apply poly_add_valid_compat; auto.
+ now apply poly_mul_mon_valid_compat; intuition. }
+ - repeat apply Pos.max_case_strong; zify; omega.
Qed.
(* Compatibility of linearity wrt to linear operations *)
Lemma poly_add_linear_compat : forall kl kr pl pr, linear kl pl -> linear kr pr ->
- linear (max kl kr) (poly_add pl pr).
+ linear (Pos.max kl kr) (poly_add pl pr).
Proof.
intros kl kr pl pr Hl; revert kr pr; induction Hl; intros kr pr Hr; simpl.
- apply (linear_le_compat kr); [|apply Nat.max_case_strong; omega].
++ apply (linear_le_compat kr); [|apply Pos.max_case_strong; zify; omega].
now induction Hr; constructor; auto.
- apply (linear_le_compat (max kr (S i))); [|repeat apply Nat.max_case_strong; omega].
++ apply (linear_le_compat (Pos.max kr (Pos.succ i))); [|now auto].
induction Hr; simpl.
- constructor; auto.
- replace i with (max i i) by (apply Nat.max_id); apply IHHl1; now constructor.
- destruct (nat_compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
- now apply (linear_le_compat (max i0 i0)); [now auto|]; rewrite Nat.max_id; auto.
- now apply (linear_le_compat (max i0 i0)); [now auto|]; rewrite Nat.max_id; auto.
- now apply (linear_le_compat (max i0 i0)); [now auto|]; rewrite Nat.max_id; auto.
- now apply (linear_le_compat (max i0 (S i))); intuition.
- apply (linear_le_compat (max i (S i0))); intuition.
+ - constructor; auto.
+ replace i with (Pos.max i i) by (apply Pos.max_id); intuition.
+ - destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition).
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. }
+ { apply (linear_le_compat (Pos.max i0 (Pos.succ i))); intuition. }
+ { apply (linear_le_compat (Pos.max i (Pos.succ i0))); intuition. }
Qed.
End Algebra.
@@ -461,27 +490,27 @@ Section Reduce.
(* A stronger version of the next lemma *)
-Lemma reduce_aux_eval_compat : forall k p var, valid (S k) p ->
- (List.nth k var false && eval var (reduce_aux k p) = List.nth k var false && eval var p).
+Lemma reduce_aux_eval_compat : forall k p var, valid (Pos.succ k) p ->
+ (list_nth k var false && eval var (reduce_aux k p) = list_nth k var false && eval var p).
Proof.
intros k p var; revert k; induction p; intros k Hv; simpl; auto.
inversion Hv; case_decide; subst.
- rewrite poly_add_compat; ring_simplify.
++ rewrite poly_add_compat; ring_simplify.
specialize (IHp1 k); specialize (IHp2 k).
- destruct (List.nth k var false); ring_simplify; [|now auto].
- rewrite <- (andb_true_l (eval var p1)), <- (andb_true_l (eval var p2)).
+ destruct (list_nth k var false); ring_simplify; [|now auto].
+ rewrite <- (andb_true_l (eval var p1)), <- (andb_true_l (eval var p3)).
rewrite <- IHp2; auto; rewrite <- IHp1; [ring|].
- apply (valid_le_compat k); now auto.
- remember (List.nth k var false) as b; destruct b; ring_simplify; [|now auto].
+ apply (valid_le_compat k); [now auto|zify; omega].
++ remember (list_nth k var false) as b; destruct b; ring_simplify; [|now auto].
case_decide; simpl.
- rewrite <- (IHp2 n); [inversion H|now auto]; simpl.
- replace (eval var p1) with (List.nth k var false && eval var p1) by (rewrite <- Heqb; ring); rewrite <- (IHp1 k).
- rewrite <- Heqb; ring.
- now apply (valid_le_compat n); [auto|omega].
- rewrite (IHp2 n); [|now auto].
- replace (eval var p1) with (List.nth k var false && eval var p1) by (rewrite <- Heqb; ring).
+ - rewrite <- (IHp2 p2); [inversion H|now auto]; simpl.
+ replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring); rewrite <- (IHp1 k).
+ { rewrite <- Heqb; ring. }
+ { apply (valid_le_compat p2); [auto|zify; omega]. }
+ - rewrite (IHp2 p2); [|now auto].
+ replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring).
rewrite <- (IHp1 k); [rewrite <- Heqb; ring|].
- apply (valid_le_compat n); [auto|omega].
+ apply (valid_le_compat p2); [auto|zify; omega].
Qed.
(* Reduction preserves evaluation by boolean assignations *)
@@ -491,44 +520,44 @@ Lemma reduce_eval_compat : forall k p var, valid k p ->
Proof.
intros k p var H; induction H; simpl; auto.
case_decide; try_rewrite; simpl.
- rewrite <- reduce_aux_eval_compat; auto; inversion H3; simpl; ring.
- repeat rewrite reduce_aux_eval_compat; try_rewrite; now auto.
++ rewrite <- reduce_aux_eval_compat; auto; inversion H3; simpl; ring.
++ repeat rewrite reduce_aux_eval_compat; try_rewrite; now auto.
Qed.
-Lemma reduce_aux_le_compat : forall k l p, valid k p -> k <= l ->
+Lemma reduce_aux_le_compat : forall k l p, valid k p -> (k <= l)%positive ->
reduce_aux l p = reduce_aux k p.
Proof.
intros k l p; revert k l; induction p; intros k l H Hle; simpl; auto.
- inversion H; subst; repeat case_decide; subst; try (exfalso; omega).
- now apply IHp1; [|now auto]; eapply valid_le_compat; [eauto|omega].
- f_equal; apply IHp1; auto.
- now eapply valid_le_compat; [eauto|omega].
+inversion H; subst; repeat case_decide; subst; try (exfalso; zify; omega).
++ apply IHp1; [|now auto]; eapply valid_le_compat; [eauto|zify; omega].
++ f_equal; apply IHp1; auto.
+ now eapply valid_le_compat; [eauto|zify; omega].
Qed.
(* Reduce projects valid polynomials into linear ones *)
-Lemma linear_reduce_aux : forall i p, valid (S i) p -> linear i (reduce_aux i p).
+Lemma linear_reduce_aux : forall i p, valid (Pos.succ i) p -> linear i (reduce_aux i p).
Proof.
intros i p; revert i; induction p; intros i Hp; simpl.
- constructor.
- inversion Hp; subst; case_decide; subst.
- rewrite <- (Nat.max_id i) at 1; apply poly_add_linear_compat.
- apply IHp1; eapply valid_le_compat; eauto.
- now intuition.
- case_decide.
- apply IHp1; eapply valid_le_compat; [eauto|omega].
- constructor; try omega; auto.
- erewrite (reduce_aux_le_compat n); [|assumption|omega].
- now apply IHp1; eapply valid_le_compat; eauto.
++ constructor.
++ inversion Hp; subst; case_decide; subst.
+ - rewrite <- (Pos.max_id i) at 1; apply poly_add_linear_compat.
+ { apply IHp1; eapply valid_le_compat; [eassumption|zify; omega]. }
+ { intuition. }
+ - case_decide.
+ { apply IHp1; eapply valid_le_compat; [eauto|zify; omega]. }
+ { constructor; try (zify; omega); auto.
+ erewrite (reduce_aux_le_compat p2); [|assumption|zify; omega].
+ apply IHp1; eapply valid_le_compat; [eauto|]; zify; omega. }
Qed.
Lemma linear_reduce : forall k p, valid k p -> linear k (reduce p).
Proof.
intros k p H; induction H; simpl.
- now constructor.
- case_decide.
- eapply linear_le_compat; [eauto|omega].
- constructor; auto.
++ now constructor.
++ case_decide.
+ - eapply linear_le_compat; [eauto|zify; omega].
+ - constructor; auto.
apply linear_reduce_aux; auto.
Qed.