aboutsummaryrefslogtreecommitdiffhomepage
path: root/lib/option.mli
diff options
context:
space:
mode:
Diffstat (limited to 'lib/option.mli')
-rw-r--r--lib/option.mli78
1 files changed, 78 insertions, 0 deletions
diff --git a/lib/option.mli b/lib/option.mli
new file mode 100644
index 000000000..0a22697e7
--- /dev/null
+++ b/lib/option.mli
@@ -0,0 +1,78 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id$ *)
+
+(** Module implementing basic combinators for OCaml option type.
+ It tries follow closely the style of OCaml standard library.
+
+ Actually, some operations have the same name as [List] ones:
+ they actually are similar considering ['a option] as a type
+ of lists with at most one element. *)
+
+(** [has_some x] is [true] if [x] is of the form [Some y] and [false]
+ otherwise. *)
+val has_some : 'a option -> bool
+
+exception IsNone
+
+(** [get x] returns [y] where [x] is [Some y]. It raises IsNone
+ if [x] equals [None]. *)
+val get : 'a option -> 'a
+
+
+(** [flatten x] is [Some y] if [x] is [Some (Some y)] and [None] otherwise. *)
+val flatten : 'a option option -> 'a option
+
+
+(** {6 "Iterators"} ***)
+
+(** [iter f x] executes [f y] if [x] equals [Some y]. It does nothing
+ otherwise. *)
+val iter : ('a -> unit) -> 'a option -> unit
+
+exception Heterogeneous
+
+(** [iter2 f x y] executes [f z w] if [x] equals [Some z] and [y] equals
+ [Some w]. It does nothing if both [x] and [y] are [None]. And raises
+ [Heterogeneous] otherwise. *)
+val iter2 : ('a -> 'b -> unit) -> 'a option -> 'b option -> unit
+
+(** [map f x] is [None] if [x] is [None] and [Some (f y)] if [x] is [Some y]. *)
+val map : ('a -> 'b) -> 'a option -> 'b option
+
+(** [smartmap f x] does the same as [map f x] except that it tries to share
+ some memory. *)
+val smartmap : ('a -> 'a) -> 'a option -> 'a option
+
+(** [fold_left f a x] is [f a y] if [x] is [Some y], and [a] otherwise. *)
+val fold_left : ('b -> 'a -> 'b) -> 'b -> 'a option -> 'b
+
+(** [fold_right f x a] is [f y a] if [x] is [Some y], and [a] otherwise. *)
+val fold_right : ('a -> 'b -> 'b) -> 'a option -> 'b -> 'b
+
+
+(** {6 More Specific operations} ***)
+
+(** [default f x a] is [f y] if [x] is [Some y] and [a] otherwise. *)
+val default : ('a -> 'b) -> 'a option -> 'b -> 'b
+
+(** [lift f x] is the same as [map f x]. *)
+val lift : ('a -> 'b) -> 'a option -> 'b option
+
+(** [lift_right f a x] is [Some (f a y)] if [x] is [Some y], and
+ [None] otherwise. *)
+val lift_right : ('a -> 'b -> 'c) -> 'a -> 'b option -> 'c option
+
+(** [lift_left f x a] is [Some (f y a)] if [x] is [Some y], and
+ [None] otherwise. *)
+val lift_left : ('a -> 'b -> 'c) -> 'a option -> 'b -> 'c option
+
+(** [lift2 f x y] is [Some (f z w)] if [x] equals [Some z] and [y] equals
+ [Some w]. It is [None] otherwise. *)
+val lift2 : ('a -> 'b -> 'c) -> 'a option -> 'b option -> 'c option