aboutsummaryrefslogtreecommitdiffhomepage
path: root/kernel/univ.ml
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/univ.ml')
-rw-r--r--kernel/univ.ml834
1 files changed, 0 insertions, 834 deletions
diff --git a/kernel/univ.ml b/kernel/univ.ml
index 34eb283d7..7e6d4de23 100644
--- a/kernel/univ.ml
+++ b/kernel/univ.ml
@@ -653,170 +653,6 @@ open Universe
let universe_level = Universe.level
-type status = Unset | SetLe | SetLt
-
-(* Comparison on this type is pointer equality *)
-type canonical_arc =
- { univ: Level.t;
- lt: Level.t list;
- le: Level.t list;
- rank : int;
- mutable status : status;
- (** Guaranteed to be unset out of the [compare_neq] functions. It is used
- to do an imperative traversal of the graph, ensuring a O(1) check that
- a node has already been visited. Quite performance critical indeed. *)
- }
-
-let arc_is_le arc = match arc.status with
-| Unset -> false
-| SetLe | SetLt -> true
-
-let arc_is_lt arc = match arc.status with
-| Unset | SetLe -> false
-| SetLt -> true
-
-let terminal u = {univ=u; lt=[]; le=[]; rank=0; status = Unset}
-
-module UMap :
-sig
- type key = Level.t
- type +'a t
- val empty : 'a t
- val add : key -> 'a -> 'a t -> 'a t
- val find : key -> 'a t -> 'a
- val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
- val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
- val iter : (key -> 'a -> unit) -> 'a t -> unit
- val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
-end = HMap.Make(Level)
-
-(* A Level.t is either an alias for another one, or a canonical one,
- for which we know the universes that are above *)
-
-type univ_entry =
- Canonical of canonical_arc
- | Equiv of Level.t
-
-type universes = univ_entry UMap.t
-
-(** Used to cleanup universes if a traversal function is interrupted before it
- has the opportunity to do it itself. *)
-let unsafe_cleanup_universes g =
- let iter _ arc = match arc with
- | Equiv _ -> ()
- | Canonical arc -> arc.status <- Unset
- in
- UMap.iter iter g
-
-let rec cleanup_universes g =
- try unsafe_cleanup_universes g
- with e ->
- (** The only way unsafe_cleanup_universes may raise an exception is when
- a serious error (stack overflow, out of memory) occurs, or a signal is
- sent. In this unlikely event, we relaunch the cleanup until we finally
- succeed. *)
- cleanup_universes g; raise e
-
-let enter_equiv_arc u v g =
- UMap.add u (Equiv v) g
-
-let enter_arc ca g =
- UMap.add ca.univ (Canonical ca) g
-
-(* Every Level.t has a unique canonical arc representative *)
-
-(** The graph always contains nodes for Prop and Set. *)
-
-let terminal_lt u v =
- {(terminal u) with lt=[v]}
-
-let empty_universes =
- let g = enter_arc (terminal Level.set) UMap.empty in
- let g = enter_arc (terminal_lt Level.prop Level.set) g in
- g
-
-(* repr : universes -> Level.t -> canonical_arc *)
-(* canonical representative : we follow the Equiv links *)
-
-let rec repr g u =
- let a =
- try UMap.find u g
- with Not_found -> anomaly ~label:"Univ.repr"
- (str"Universe " ++ Level.pr u ++ str" undefined")
- in
- match a with
- | Equiv v -> repr g v
- | Canonical arc -> arc
-
-let get_prop_arc g = repr g Level.prop
-let get_set_arc g = repr g Level.set
-let is_set_arc u = Level.is_set u.univ
-let is_prop_arc u = Level.is_prop u.univ
-
-exception AlreadyDeclared
-
-let add_universe vlev strict g =
- try
- let _arcv = UMap.find vlev g in
- raise AlreadyDeclared
- with Not_found ->
- let v = terminal vlev in
- let arc =
- let arc = get_set_arc g in
- if strict then
- { arc with lt=vlev::arc.lt}
- else
- { arc with le=vlev::arc.le}
- in
- let g = enter_arc arc g in
- enter_arc v g
-
-(* reprleq : canonical_arc -> canonical_arc list *)
-(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
-let reprleq g arcu =
- let rec searchrec w = function
- | [] -> w
- | v :: vl ->
- let arcv = repr g v in
- if List.memq arcv w || arcu==arcv then
- searchrec w vl
- else
- searchrec (arcv :: w) vl
- in
- searchrec [] arcu.le
-
-
-(* between : Level.t -> canonical_arc -> canonical_arc list *)
-(* between u v = { w | u<=w<=v, w canonical } *)
-(* between is the most costly operation *)
-
-let between g arcu arcv =
- (* good are all w | u <= w <= v *)
- (* bad are all w | u <= w ~<= v *)
- (* find good and bad nodes in {w | u <= w} *)
- (* explore b u = (b or "u is good") *)
- let rec explore ((good, bad, b) as input) arcu =
- if List.memq arcu good then
- (good, bad, true) (* b or true *)
- else if List.memq arcu bad then
- input (* (good, bad, b or false) *)
- else
- let leq = reprleq g arcu in
- (* is some universe >= u good ? *)
- let good, bad, b_leq =
- List.fold_left explore (good, bad, false) leq
- in
- if b_leq then
- arcu::good, bad, true (* b or true *)
- else
- good, arcu::bad, b (* b or false *)
- in
- let good,_,_ = explore ([arcv],[],false) arcu in
- good
-(* We assume compare(u,v) = LE with v canonical (see compare below).
- In this case List.hd(between g u v) = repr u
- Otherwise, between g u v = []
- *)
type constraint_type = Lt | Le | Eq
@@ -831,343 +667,6 @@ let constraint_type_ord c1 c2 = match c1, c2 with
| Eq, Eq -> 0
| Eq, _ -> 1
-(** [fast_compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?
-
- In [strict] mode, we fully distinguish between LE and LT, while in
- non-strict mode, we simply answer LE for both situations.
-
- If [arcv] is encountered in a LT part, we could directly answer
- without visiting unneeded parts of this transitive closure.
- In [strict] mode, if [arcv] is encountered in a LE part, we could only
- change the default answer (1st arg [c]) from NLE to LE, since a strict
- constraint may appear later. During the recursive traversal,
- [lt_done] and [le_done] are universes we have already visited,
- they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
- two lists of universes not yet considered, known to be above [arcu],
- strictly or not.
-
- We use depth-first search, but the presence of [arcv] in [new_lt]
- is checked as soon as possible : this seems to be slightly faster
- on a test.
-
- We do the traversal imperatively, setting the [status] flag on visited nodes.
- This ensures O(1) check, but it also requires unsetting the flag when leaving
- the function. Some special care has to be taken in order to ensure we do not
- recover a messed up graph at the end. This occurs in particular when the
- traversal raises an exception. Even though the code below is exception-free,
- OCaml may still raise random exceptions, essentially fatal exceptions or
- signal handlers. Therefore we ensure the cleanup by a catch-all clause. Note
- also that the use of an imperative solution does make this function
- thread-unsafe. For now we do not check universes in different threads, but if
- ever this is to be done, we would need some lock somewhere.
-
-*)
-
-let get_explanation strict g arcu arcv =
- (* [c] characterizes whether (and how) arcv has already been related
- to arcu among the lt_done,le_done universe *)
- let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
- | [],[] -> (to_revert, c)
- | (arc,p)::lt_todo, le_todo ->
- if arc_is_lt arc then
- cmp c to_revert lt_todo le_todo
- else
- let rec find lt_todo lt le = match le with
- | [] ->
- begin match lt with
- | [] ->
- let () = arc.status <- SetLt in
- cmp c (arc :: to_revert) lt_todo le_todo
- | u :: lt ->
- let arc = repr g u in
- let p = (Lt, make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt le
- end
- | u :: le ->
- let arc = repr g u in
- let p = (Le, make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt le
- in
- find lt_todo arc.lt arc.le
- | [], (arc,p)::le_todo ->
- if arc == arcv then
- (* No need to continue inspecting universes above arc:
- if arcv is strictly above arc, then we would have a cycle.
- But we cannot answer LE yet, a stronger constraint may
- come later from [le_todo]. *)
- if strict then cmp p to_revert [] le_todo else (to_revert, p)
- else
- if arc_is_le arc then
- cmp c to_revert [] le_todo
- else
- let rec find lt_todo lt = match lt with
- | [] ->
- let fold accu u =
- let p = (Le, make u) :: p in
- let node = (repr g u, p) in
- node :: accu
- in
- let le_new = List.fold_left fold le_todo arc.le in
- let () = arc.status <- SetLe in
- cmp c (arc :: to_revert) lt_todo le_new
- | u :: lt ->
- let arc = repr g u in
- let p = (Lt, make u) :: p in
- if arc == arcv then
- if strict then (to_revert, p) else (to_revert, p)
- else find ((arc, p) :: lt_todo) lt
- in
- find [] arc.lt
- in
- let start = (* if is_prop_arc arcu then [Le, make arcv.univ] else *) [] in
- try
- let (to_revert, c) = cmp start [] [] [(arcu, [])] in
- (** Reset all the touched arcs. *)
- let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
- List.rev c
- with e ->
- (** Unlikely event: fatal error or signal *)
- let () = cleanup_universes g in
- raise e
-
-let get_explanation strict g arcu arcv =
- if !Flags.univ_print then Some (get_explanation strict g arcu arcv)
- else None
-
-type fast_order = FastEQ | FastLT | FastLE | FastNLE
-
-let fast_compare_neq strict g arcu arcv =
- (* [c] characterizes whether arcv has already been related
- to arcu among the lt_done,le_done universe *)
- let rec cmp c to_revert lt_todo le_todo = match lt_todo, le_todo with
- | [],[] -> (to_revert, c)
- | arc::lt_todo, le_todo ->
- if arc_is_lt arc then
- cmp c to_revert lt_todo le_todo
- else
- let () = arc.status <- SetLt in
- process_lt c (arc :: to_revert) lt_todo le_todo arc.lt arc.le
- | [], arc::le_todo ->
- if arc == arcv then
- (* No need to continue inspecting universes above arc:
- if arcv is strictly above arc, then we would have a cycle.
- But we cannot answer LE yet, a stronger constraint may
- come later from [le_todo]. *)
- if strict then cmp FastLE to_revert [] le_todo else (to_revert, FastLE)
- else
- if arc_is_le arc then
- cmp c to_revert [] le_todo
- else
- let () = arc.status <- SetLe in
- process_le c (arc :: to_revert) [] le_todo arc.lt arc.le
-
- and process_lt c to_revert lt_todo le_todo lt le = match le with
- | [] ->
- begin match lt with
- | [] -> cmp c to_revert lt_todo le_todo
- | u :: lt ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_lt c to_revert (arc :: lt_todo) le_todo lt le
- end
- | u :: le ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_lt c to_revert (arc :: lt_todo) le_todo lt le
-
- and process_le c to_revert lt_todo le_todo lt le = match lt with
- | [] ->
- let fold accu u =
- let node = repr g u in
- node :: accu
- in
- let le_new = List.fold_left fold le_todo le in
- cmp c to_revert lt_todo le_new
- | u :: lt ->
- let arc = repr g u in
- if arc == arcv then
- if strict then (to_revert, FastLT) else (to_revert, FastLE)
- else process_le c to_revert (arc :: lt_todo) le_todo lt le
-
- in
- try
- let (to_revert, c) = cmp FastNLE [] [] [arcu] in
- (** Reset all the touched arcs. *)
- let () = List.iter (fun arc -> arc.status <- Unset) to_revert in
- c
- with e ->
- (** Unlikely event: fatal error or signal *)
- let () = cleanup_universes g in
- raise e
-
-let get_explanation_strict g arcu arcv = get_explanation true g arcu arcv
-
-let fast_compare g arcu arcv =
- if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv
-
-let is_leq g arcu arcv =
- arcu == arcv ||
- (match fast_compare_neq false g arcu arcv with
- | FastNLE -> false
- | (FastEQ|FastLE|FastLT) -> true)
-
-let is_lt g arcu arcv =
- if arcu == arcv then false
- else
- match fast_compare_neq true g arcu arcv with
- | FastLT -> true
- | (FastEQ|FastLE|FastNLE) -> false
-
-(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
- compare(u,v) = LT or LE => compare(v,u) = NLE
- compare(u,v) = NLE => compare(v,u) = NLE or LE or LT
-
- Adding u>=v is consistent iff compare(v,u) # LT
- and then it is redundant iff compare(u,v) # NLE
- Adding u>v is consistent iff compare(v,u) = NLE
- and then it is redundant iff compare(u,v) = LT *)
-
-(** * Universe checks [check_eq] and [check_leq], used in coqchk *)
-
-(** First, checks on universe levels *)
-
-let check_equal g u v =
- let arcu = repr g u and arcv = repr g v in
- arcu == arcv
-
-let check_eq_level g u v = u == v || check_equal g u v
-
-let check_smaller g strict u v =
- let arcu = repr g u and arcv = repr g v in
- if strict then
- is_lt g arcu arcv
- else
- is_prop_arc arcu
- || (is_set_arc arcu && not (is_prop_arc arcv))
- || is_leq g arcu arcv
-
-(** Then, checks on universes *)
-
-type 'a check_function = universes -> 'a -> 'a -> bool
-
-let check_equal_expr g x y =
- x == y || (let (u, n) = x and (v, m) = y in
- Int.equal n m && check_equal g u v)
-
-let check_eq_univs g l1 l2 =
- let f x1 x2 = check_equal_expr g x1 x2 in
- let exists x1 l = Huniv.exists (fun x2 -> f x1 x2) l in
- Huniv.for_all (fun x1 -> exists x1 l2) l1
- && Huniv.for_all (fun x2 -> exists x2 l1) l2
-
-let check_eq g u v =
- Universe.equal u v || check_eq_univs g u v
-
-let check_smaller_expr g (u,n) (v,m) =
- let diff = n - m in
- match diff with
- | 0 -> check_smaller g false u v
- | 1 -> check_smaller g true u v
- | x when x < 0 -> check_smaller g false u v
- | _ -> false
-
-let exists_bigger g ul l =
- Huniv.exists (fun ul' ->
- check_smaller_expr g ul ul') l
-
-let real_check_leq g u v =
- Huniv.for_all (fun ul -> exists_bigger g ul v) u
-
-let check_leq g u v =
- Universe.equal u v ||
- Universe.is_type0m u ||
- check_eq_univs g u v || real_check_leq g u v
-
-(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)
-
-(* setlt : Level.t -> Level.t -> reason -> unit *)
-(* forces u > v *)
-(* this is normally an update of u in g rather than a creation. *)
-let setlt g arcu arcv =
- let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
- enter_arc arcu' g, arcu'
-
-(* checks that non-redundant *)
-let setlt_if (g,arcu) v =
- let arcv = repr g v in
- if is_lt g arcu arcv then g, arcu
- else setlt g arcu arcv
-
-(* setleq : Level.t -> Level.t -> unit *)
-(* forces u >= v *)
-(* this is normally an update of u in g rather than a creation. *)
-let setleq g arcu arcv =
- let arcu' = {arcu with le=arcv.univ::arcu.le} in
- enter_arc arcu' g, arcu'
-
-(* checks that non-redundant *)
-let setleq_if (g,arcu) v =
- let arcv = repr g v in
- if is_leq g arcu arcv then g, arcu
- else setleq g arcu arcv
-
-(* merge : Level.t -> Level.t -> unit *)
-(* we assume compare(u,v) = LE *)
-(* merge u v forces u ~ v with repr u as canonical repr *)
-let merge g arcu arcv =
- (* we find the arc with the biggest rank, and we redirect all others to it *)
- let arcu, g, v =
- let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
- if Level.is_small arc.univ ||
- (arc.rank >= max_rank && not (Level.is_small best_arc.univ))
- then (arc.rank, max_rank, arc, best_arc::rest)
- else (max_rank, old_max_rank, best_arc, arc::rest)
- in
- match between g arcu arcv with
- | [] -> anomaly (str "Univ.between")
- | arc::rest ->
- let (max_rank, old_max_rank, best_arc, rest) =
- List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
- if max_rank > old_max_rank then best_arc, g, rest
- else begin
- (* one redirected node also has max_rank *)
- let arcu = {best_arc with rank = max_rank + 1} in
- arcu, enter_arc arcu g, rest
- end
- in
- let redirect (g,w,w') arcv =
- let g' = enter_equiv_arc arcv.univ arcu.univ g in
- (g',List.unionq arcv.lt w,arcv.le@w')
- in
- let (g',w,w') = List.fold_left redirect (g,[],[]) v in
- let g_arcu = (g',arcu) in
- let g_arcu = List.fold_left setlt_if g_arcu w in
- let g_arcu = List.fold_left setleq_if g_arcu w' in
- fst g_arcu
-
-(* merge_disc : Level.t -> Level.t -> unit *)
-(* we assume compare(u,v) = compare(v,u) = NLE *)
-(* merge_disc u v forces u ~ v with repr u as canonical repr *)
-let merge_disc g arc1 arc2 =
- let arcu, arcv = if Level.is_small arc2.univ || arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
- let arcu, g =
- if not (Int.equal arc1.rank arc2.rank) then arcu, g
- else
- let arcu = {arcu with rank = succ arcu.rank} in
- arcu, enter_arc arcu g
- in
- let g' = enter_equiv_arc arcv.univ arcu.univ g in
- let g_arcu = (g',arcu) in
- let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
- let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
- fst g_arcu
-
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
@@ -1178,70 +677,10 @@ exception UniverseInconsistency of univ_inconsistency
let error_inconsistency o u v (p:explanation option) =
raise (UniverseInconsistency (o,make u,make v,p))
-(* enforce_univ_eq : Level.t -> Level.t -> unit *)
-(* enforce_univ_eq u v will force u=v if possible, will fail otherwise *)
-
-let enforce_univ_eq u v g =
- let arcu = repr g u and arcv = repr g v in
- match fast_compare g arcu arcv with
- | FastEQ -> g
- | FastLT ->
- let p = get_explanation_strict g arcu arcv in
- error_inconsistency Eq v u p
- | FastLE -> merge g arcu arcv
- | FastNLE ->
- (match fast_compare g arcv arcu with
- | FastLT ->
- let p = get_explanation_strict g arcv arcu in
- error_inconsistency Eq u v p
- | FastLE -> merge g arcv arcu
- | FastNLE -> merge_disc g arcu arcv
- | FastEQ -> anomaly (Pp.str "Univ.compare"))
-
-(* enforce_univ_leq : Level.t -> Level.t -> unit *)
-(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
-let enforce_univ_leq u v g =
- let arcu = repr g u and arcv = repr g v in
- if is_leq g arcu arcv then g
- else
- match fast_compare g arcv arcu with
- | FastLT ->
- let p = get_explanation_strict g arcv arcu in
- error_inconsistency Le u v p
- | FastLE -> merge g arcv arcu
- | FastNLE -> fst (setleq g arcu arcv)
- | FastEQ -> anomaly (Pp.str "Univ.compare")
-
-(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
-let enforce_univ_lt u v g =
- let arcu = repr g u and arcv = repr g v in
- match fast_compare g arcu arcv with
- | FastLT -> g
- | FastLE -> fst (setlt g arcu arcv)
- | FastEQ -> error_inconsistency Lt u v (Some [(Eq,make v)])
- | FastNLE ->
- match fast_compare_neq false g arcv arcu with
- FastNLE -> fst (setlt g arcu arcv)
- | FastEQ -> anomaly (Pp.str "Univ.compare")
- | (FastLE|FastLT) ->
- let p = get_explanation false g arcv arcu in
- error_inconsistency Lt u v p
-
-(* Prop = Set is forbidden here. *)
-let initial_universes = empty_universes
-
-let is_initial_universes g = UMap.equal (==) g initial_universes
-
(* Constraints and sets of constraints. *)
type univ_constraint = Level.t * constraint_type * Level.t
-let enforce_constraint cst g =
- match cst with
- | (u,Lt,v) -> enforce_univ_lt u v g
- | (u,Le,v) -> enforce_univ_leq u v g
- | (u,Eq,v) -> enforce_univ_eq u v g
-
let pr_constraint_type op =
let op_str = match op with
| Lt -> " < "
@@ -1276,8 +715,6 @@ end
let empty_constraint = Constraint.empty
let union_constraint = Constraint.union
let eq_constraint = Constraint.equal
-let merge_constraints c g =
- Constraint.fold enforce_constraint c g
type constraints = Constraint.t
@@ -1378,218 +815,12 @@ let enforce_leq u v c =
let enforce_leq_level u v c =
if Level.equal u v then c else Constraint.add (u,Le,v) c
-let check_constraint g (l,d,r) =
- match d with
- | Eq -> check_equal g l r
- | Le -> check_smaller g false l r
- | Lt -> check_smaller g true l r
-
-let check_constraints c g =
- Constraint.for_all (check_constraint g) c
-
let enforce_univ_constraint (u,d,v) =
match d with
| Eq -> enforce_eq u v
| Le -> enforce_leq u v
| Lt -> enforce_leq (super u) v
-(* Normalization *)
-
-let lookup_level u g =
- try Some (UMap.find u g) with Not_found -> None
-
-(** [normalize_universes g] returns a graph where all edges point
- directly to the canonical representent of their target. The output
- graph should be equivalent to the input graph from a logical point
- of view, but optimized. We maintain the invariant that the key of
- a [Canonical] element is its own name, by keeping [Equiv] edges
- (see the assertion)... I (Stéphane Glondu) am not sure if this
- plays a role in the rest of the module. *)
-let normalize_universes g =
- let rec visit u arc cache = match lookup_level u cache with
- | Some x -> x, cache
- | None -> match Lazy.force arc with
- | None ->
- u, UMap.add u u cache
- | Some (Canonical {univ=v; lt=_; le=_}) ->
- v, UMap.add u v cache
- | Some (Equiv v) ->
- let v, cache = visit v (lazy (lookup_level v g)) cache in
- v, UMap.add u v cache
- in
- let cache = UMap.fold
- (fun u arc cache -> snd (visit u (Lazy.lazy_from_val (Some arc)) cache))
- g UMap.empty
- in
- let repr x = UMap.find x cache in
- let lrepr us = List.fold_left
- (fun e x -> LSet.add (repr x) e) LSet.empty us
- in
- let canonicalize u = function
- | Equiv _ -> Equiv (repr u)
- | Canonical {univ=v; lt=lt; le=le; rank=rank} ->
- assert (u == v);
- (* avoid duplicates and self-loops *)
- let lt = lrepr lt and le = lrepr le in
- let le = LSet.filter
- (fun x -> x != u && not (LSet.mem x lt)) le
- in
- LSet.iter (fun x -> assert (x != u)) lt;
- Canonical {
- univ = v;
- lt = LSet.elements lt;
- le = LSet.elements le;
- rank = rank;
- status = Unset;
- }
- in
- UMap.mapi canonicalize g
-
-let constraints_of_universes g =
- let constraints_of u v acc =
- match v with
- | Canonical {univ=u; lt=lt; le=le} ->
- let acc = List.fold_left (fun acc v -> Constraint.add (u,Lt,v) acc) acc lt in
- let acc = List.fold_left (fun acc v -> Constraint.add (u,Le,v) acc) acc le in
- acc
- | Equiv v -> Constraint.add (u,Eq,v) acc
- in
- UMap.fold constraints_of g Constraint.empty
-
-let constraints_of_universes g =
- constraints_of_universes (normalize_universes g)
-
-(** Longest path algorithm. This is used to compute the minimal number of
- universes required if the only strict edge would be the Lt one. This
- algorithm assumes that the given universes constraints are a almost DAG, in
- the sense that there may be {Eq, Le}-cycles. This is OK for consistent
- universes, which is the only case where we use this algorithm. *)
-
-(** Adjacency graph *)
-type graph = constraint_type LMap.t LMap.t
-
-exception Connected
-
-(** Check connectedness *)
-let connected x y (g : graph) =
- let rec connected x target seen g =
- if Level.equal x target then raise Connected
- else if not (LSet.mem x seen) then
- let seen = LSet.add x seen in
- let fold z _ seen = connected z target seen g in
- let neighbours = try LMap.find x g with Not_found -> LMap.empty in
- LMap.fold fold neighbours seen
- else seen
- in
- try ignore(connected x y LSet.empty g); false with Connected -> true
-
-let add_edge x y v (g : graph) =
- try
- let neighbours = LMap.find x g in
- let neighbours = LMap.add y v neighbours in
- LMap.add x neighbours g
- with Not_found ->
- LMap.add x (LMap.singleton y v) g
-
-(** We want to keep the graph DAG. If adding an edge would cause a cycle, that
- would necessarily be an {Eq, Le}-cycle, otherwise there would have been a
- universe inconsistency. Therefore we may omit adding such a cycling edge
- without changing the compacted graph. *)
-let add_eq_edge x y v g = if connected y x g then g else add_edge x y v g
-
-(** Construct the DAG and its inverse at the same time. *)
-let make_graph g : (graph * graph) =
- let fold u arc accu = match arc with
- | Equiv v ->
- let (dir, rev) = accu in
- (add_eq_edge u v Eq dir, add_eq_edge v u Eq rev)
- | Canonical { univ; lt; le; } ->
- let () = assert (u == univ) in
- let fold_lt (dir, rev) v = (add_edge u v Lt dir, add_edge v u Lt rev) in
- let fold_le (dir, rev) v = (add_eq_edge u v Le dir, add_eq_edge v u Le rev) in
- (** Order is important : lt after le, because of the possible redundancy
- between [le] and [lt] in a canonical arc. This way, the [lt] constraint
- is the last one set, which is correct because it implies [le]. *)
- let accu = List.fold_left fold_le accu le in
- let accu = List.fold_left fold_lt accu lt in
- accu
- in
- UMap.fold fold g (LMap.empty, LMap.empty)
-
-(** Construct a topological order out of a DAG. *)
-let rec topological_fold u g rem seen accu =
- let is_seen =
- try
- let status = LMap.find u seen in
- assert status; (** If false, not a DAG! *)
- true
- with Not_found -> false
- in
- if not is_seen then
- let rem = LMap.remove u rem in
- let seen = LMap.add u false seen in
- let neighbours = try LMap.find u g with Not_found -> LMap.empty in
- let fold v _ (rem, seen, accu) = topological_fold v g rem seen accu in
- let (rem, seen, accu) = LMap.fold fold neighbours (rem, seen, accu) in
- (rem, LMap.add u true seen, u :: accu)
- else (rem, seen, accu)
-
-let rec topological g rem seen accu =
- let node = try Some (LMap.choose rem) with Not_found -> None in
- match node with
- | None -> accu
- | Some (u, _) ->
- let rem, seen, accu = topological_fold u g rem seen accu in
- topological g rem seen accu
-
-(** Compute the longest path from any vertex. *)
-let constraint_cost = function
-| Eq | Le -> 0
-| Lt -> 1
-
-(** This algorithm browses the graph in topological order, computing for each
- encountered node the length of the longest path leading to it. Should be
- O(|V|) or so (modulo map representation). *)
-let rec flatten_graph rem (rev : graph) map mx = match rem with
-| [] -> map, mx
-| u :: rem ->
- let prev = try LMap.find u rev with Not_found -> LMap.empty in
- let fold v cstr accu =
- let v_cost = LMap.find v map in
- max (v_cost + constraint_cost cstr) accu
- in
- let u_cost = LMap.fold fold prev 0 in
- let map = LMap.add u u_cost map in
- flatten_graph rem rev map (max mx u_cost)
-
-(** [sort_universes g] builds a map from universes in [g] to natural
- numbers. It outputs a graph containing equivalence edges from each
- level appearing in [g] to [Type.n], and [lt] edges between the
- [Type.n]s. The output graph should imply the input graph (and the
- [Type.n]s. The output graph should imply the input graph (and the
- implication will be strict most of the time), but is not
- necessarily minimal. Note: the result is unspecified if the input
- graph already contains [Type.n] nodes (calling a module Type is
- probably a bad idea anyway). *)
-let sort_universes orig =
- let (dir, rev) = make_graph orig in
- let order = topological dir dir LMap.empty [] in
- let compact, max = flatten_graph order rev LMap.empty 0 in
- let mp = Names.DirPath.make [Names.Id.of_string "Type"] in
- let types = Array.init (max + 1) (fun n -> Level.make mp n) in
- (** Old universes are made equal to [Type.n] *)
- let fold u level accu = UMap.add u (Equiv types.(level)) accu in
- let sorted = LMap.fold fold compact UMap.empty in
- (** Add all [Type.n] nodes *)
- let fold i accu u =
- if i < max then
- let pred = types.(i + 1) in
- let arc = {univ = u; lt = [pred]; le = []; rank = 0; status = Unset; } in
- UMap.add u (Canonical arc) accu
- else accu
- in
- Array.fold_left_i fold sorted types
-
(* Miscellaneous functions to remove or test local univ assumed to
occur in a universe *)
@@ -1645,7 +876,6 @@ module Instance : sig
val pr : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds
val levels : t -> LSet.t
- val check_eq : t check_function
end =
struct
type t = Level.t array
@@ -1729,13 +959,6 @@ struct
(* Necessary as universe instances might come from different modules and
unmarshalling doesn't preserve sharing *))
- let check_eq g t1 t2 =
- t1 == t2 ||
- (Int.equal (Array.length t1) (Array.length t2) &&
- let rec aux i =
- (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
- in aux 0)
-
end
let enforce_eq_instances x y =
@@ -1985,27 +1208,6 @@ let abstract_universes poly ctx =
(** Pretty-printing *)
-let pr_arc prl = function
- | _, Canonical {univ=u; lt=[]; le=[]} ->
- mt ()
- | _, Canonical {univ=u; lt=lt; le=le} ->
- let opt_sep = match lt, le with
- | [], _ | _, [] -> mt ()
- | _ -> spc ()
- in
- prl u ++ str " " ++
- v 0
- (pr_sequence (fun v -> str "< " ++ prl v) lt ++
- opt_sep ++
- pr_sequence (fun v -> str "<= " ++ prl v) le) ++
- fnl ()
- | u, Equiv v ->
- prl u ++ str " = " ++ prl v ++ fnl ()
-
-let pr_universes prl g =
- let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in
- prlist (pr_arc prl) graph
-
let pr_constraints prl = Constraint.pr prl
let pr_universe_context = UContext.pr
@@ -2018,19 +1220,6 @@ let pr_universe_subst =
let pr_universe_level_subst =
LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ())
-(* Dumping constraints to a file *)
-
-let dump_universes output g =
- let dump_arc u = function
- | Canonical {univ=u; lt=lt; le=le} ->
- let u_str = Level.to_string u in
- List.iter (fun v -> output Lt (Level.to_string v) u_str) lt;
- List.iter (fun v -> output Le (Level.to_string v) u_str) le
- | Equiv v ->
- output Eq (Level.to_string u) (Level.to_string v)
- in
- UMap.iter dump_arc g
-
module Huniverse_set =
Hashcons.Make(
struct
@@ -2078,26 +1267,3 @@ let subst_instance_constraints =
let key = Profile.declare_profile "subst_instance_constraints" in
Profile.profile2 key subst_instance_constraints
else subst_instance_constraints
-
-let merge_constraints =
- if Flags.profile then
- let key = Profile.declare_profile "merge_constraints" in
- Profile.profile2 key merge_constraints
- else merge_constraints
-let check_constraints =
- if Flags.profile then
- let key = Profile.declare_profile "check_constraints" in
- Profile.profile2 key check_constraints
- else check_constraints
-
-let check_eq =
- if Flags.profile then
- let check_eq_key = Profile.declare_profile "check_eq" in
- Profile.profile3 check_eq_key check_eq
- else check_eq
-
-let check_leq =
- if Flags.profile then
- let check_leq_key = Profile.declare_profile "check_leq" in
- Profile.profile3 check_leq_key check_leq
- else check_leq